[解析]①解决翻折类问题.首先应注意翻折前后的两个图形是全等图.找出相等的边和角.其次要注意对应点的连线被对称轴垂直平分.结合这两个性质来解决.在运用分类讨论的方法解决问题时.关键在于正确的分类.因而应有一定的分类标准.如E为顶点.P为顶点.F为顶点.在分析题意时.也应注意一些关键的点或线段.借助这些关键点和线段来准确分类.这样才能做到不重不漏.③解决和最短之类的问题.常构建水泵站模型解决. [答案](1),. (2)在中.. . 设点的坐标为.其中. 顶点. 设抛物线解析式为. ①如图①.当时.. . 解得,. . . 解得. 抛物线的解析式为 ②如图②.当时.. . 解得. ③当时..这种情况不存在. 综上所述.符合条件的抛物线解析式是. (3)存在点.使得四边形的周长最小. 如图③.作点关于轴的对称点. 作点关于轴的对称点.连接.分别与轴.轴交于点.则点就是所求点. .. . . 又. .此时四边形的周长最小值是. 查看更多

 

题目列表(包括答案和解析)

 阅读下面材料:

问题:如图①,在△ABC中, DBC边上的一点,若∠BAD=∠C=2∠DAC=45°,DC=2.求BD的长.

小明同学的解题思路是:利用轴对称,把△ADC进行翻折,再经过推理、计算使问题

得到解决.

(1)请你回答:图中BD的长为   

(2)参考小明的思路,探究并解答问题:如图②,在△ABC中,DBC边上的一点,若∠BAD=∠C=2∠DAC=30°,DC=2,求BDAB的长.

                                                                                  

【解析】(1)利用三角形的内角和和角平分线定理进行解答,(2)根据对称的性质、全等三角形的判定和性质以及勾股定理求解

 

查看答案和解析>>

已知:如图1,矩形ABCD中,AB=6,BC=8,EFGH分别是ABBCCDDA四条边上的点(且不与各边顶点重合),设m=EF+FG+GH+HE,探索m的取值范围.

(1)如图2,当EFGH分别是ABBCCDDA四边中点时,m________

(2)为了解决这个问题,小贝同学采用轴对称的方法,如图3,将整个图形以CD为对称轴翻折,接着再连续翻折两次,从而找到解决问题的途径,求得m的取值范围.

①请在图1中补全小贝同学翻折后的图形;

m的取值范围是____________

【解析】本题主要考查对平行四边形的性质和判定,全等三角形的性质和判定等知识点的理解和掌握

 

查看答案和解析>>

已知:如图1,矩形ABCD中,AB=6,BC=8,EFGH分别是ABBCCDDA四条边上的点(且不与各边顶点重合),设m=EF+FG+GH+HE,探索m的取值范围.

(1)如图2,当EFGH分别是ABBCCDDA四边中点时,m________

(2)为了解决这个问题,小贝同学采用轴对称的方法,如图3,将整个图形以CD为对称轴翻折,接着再连续翻折两次,从而找到解决问题的途径,求得m的取值范围.

①请在图1中补全小贝同学翻折后的图形;

m的取值范围是____________

【解析】本题主要考查对平行四边形的性质和判定,全等三角形的性质和判定等知识点的理解和掌握

 

查看答案和解析>>

 阅读下面材料:

问题:如图①,在△ABC中, DBC边上的一点,若∠BAD=∠C=2∠DAC=45°,DC=2.求BD的长.

小明同学的解题思路是:利用轴对称,把△ADC进行翻折,再经过推理、计算使问题

得到解决.

(1)请你回答:图中BD的长为   

(2)参考小明的思路,探究并解答问题:如图②,在△ABC中,DBC边上的一点,若∠BAD=∠C=2∠DAC=30°,DC=2,求BDAB的长.

                                                                                  

【解析】(1)利用三角形的内角和和角平分线定理进行解答,(2)根据对称的性质、全等三角形的判定和性质以及勾股定理求解

 

查看答案和解析>>

阅读下面材料:
小伟遇到这样一个问题,如图1,在梯形ABCD中,AD∥BC,对角线AC,BD相交于点O.若梯形ABCD的面积为1,试求以AC,BD,AD+BC的长度为三边长的三角形的面积.
精英家教网
小伟是这样思考的:要想解决这个问题,首先应想办法移动这些分散的线段,构造一个三角形,再计算其面积即可.他先后尝试了翻折,旋转,平移的方法,发现通过平移可以解决这个问题.他的方法是过点D作AC的平行线交BC的延长线于点E,得到的△BDE即是以AC,BD,AD+BC的长度为三边长的三角形(如图2).
参考小伟同学的思考问题的方法,解决下列问题:
如图3,△ABC的三条中线分别为AD,BE,CF.
(1)在图3中利用图形变换画出并指明以AD,BE,CF的长度为三边长的一个三角形(保留画图痕迹);
(2)若△ABC的面积为1,则以AD,BE,CF的长度为三边长的三角形的面积等于
 

查看答案和解析>>


同步练习册答案