[解析]这一类型题目关键是看懂题目,按照题目的要求去做即可. [答案]模型拓展一:(1)1+5=6,(2)1+5×9=46,(3)1+5(n-1) 模型拓展二:(1)1+m,(2)1+m(n-1) 问题解决:(1)在不透明口袋中放入18种颜色的小球各40个.现要确保从口袋中随机摸出的小球至少有10个是同色的.则最少需摸出多少个小球? =163 查看更多

 

题目列表(包括答案和解析)

如图表示一骑自行车者和一骑摩托车者沿相同路线由甲地到乙地行驶过程的函数图象(分别为正比例函数和一次函数).两地间的距离是80km.请你根据图象回答或解决下列问题:

(1)谁出发得较早?早多长时间?谁到达乙地较早?早多长时间?

(2)两人在途中行驶的速度分别是多少?

(3)请你分别求出表示自行车和摩托车行驶过程的函数解析式;(不要求写出自变量的取值范围)(因为学生还未学习二元一次方程组解法,所以本题对学生要求较高,但可以通过图象分析出速度,再根据路程与时间的关系列出函数关系式,以下一些类型题可同理解答);

(4)指出在什么时间段内两车均行驶在途中(不包括端点)、在这一时间段内,请你分别按下列条件列出关于时间x的方程或不等式(不要求化简,也不要求求解):

①自行车行驶在摩托车前面;

②自行车与摩托车相遇;

③自行车行驶在摩托车后面.

查看答案和解析>>

21、某电台“市民热线”抽查了某一周内接到热线电话,并进行分类统计,得到的统计信息如下表:
电话类型 房产城建 道路交通 环境保护 子女学习 其他方面  合计
电话次数 150   120
占比例 25%   20% 25% 100%
根据上表所给的信息,回答下列问题:
(1)这一周“市民热线”接到的电话总数是
600

(2)这一周“市民热线”接到关于子女学习方面的电话占本周总电话数的
10%
(填写百分比);
(3)据此估计“市民热线”一个月(按4.5周计算)接到的总电话数是
2700

(4)若将上表表示成扇形图,请你计算出有关环境保护方面电话的圆心角度数.

查看答案和解析>>

精英家教网如图,小明在一次高尔夫球争霸赛中,从山坡下O点打出一球向球洞A点飞去,球的飞行路线为抛物线,如果不考虑空气阻力,当球达到最大水平高度12米时,球移动的水平距离为9米.已知山坡OA与水平方向OC的夹角为30°,O、A两点相距8
3
米.
(1)求出点A的坐标及直线OA的解析式;
(2)求出球的飞行路线所在抛物线的解析式;
(3)判断小明这一杆能否把高尔夫球从O点直接打入球洞A点?

查看答案和解析>>

某海产品市场管理部门规划建造面积为2400m2的集贸大棚,大棚内设A种类型和B种类型的店面共80间,每间A种类型的店面的平均面积为28m2,月租费为400元;每间B种类型的店面的平均面积为20m2,月租费为360元.全部店面的建造面积不低于大棚总面积的80%,又不能超过大棚总面积的85%.
(1)试确定A种类型店面的数量的范围;
(2)该大棚管理部门通过了解业主的租赁意向得知,A种类型店面的出租率为75%,B种类型店面的出租率为90%.
①开发商计划每年能有28万元的租金收入,你认为这一目标能实现吗?若能,应该如何安排A、B两类店面数量?若不能,说明理由.
②为使店面的月租费最高,最高月租金是多少?

查看答案和解析>>

(2012•武汉)如图,小河上有一拱桥,拱桥及河道的截面轮廓线由抛物线的一部分ACB和矩形的三边AE,ED,DB组成,已知河底ED是水平的,ED=16米,AE=8米,抛物线的顶点C到ED的距离是11米,以ED所在的直线为x轴,抛物线的对称轴为y轴建立平面直角坐标系.
(1)求抛物线的解析式;
(2)已知从某时刻开始的40小时内,水面与河底ED的距离h(单位:米)随时间t(单位:时)的变化满足函数关系h=-
1128
(t-19)2+8(0≤t≤40),且当水面到顶点C的距离不大于5米时,需禁止船只通行,请通过计算说明:在这一时段内,需多少小时禁止船只通行?

查看答案和解析>>


同步练习册答案