22.解:(1)解法一:在△ABC与△DEF中.若∠A=∠D.AC=DF.AB=DE.则△ABC≌△DEF. 解法二:在△ABC与△DEF中.若AC=DF.AB=DE.△ABC的周长与△DEF的周长相等.则△ABC≌△DEF. (2)解法一:假命题:在△ABC与△DEF中.若△ABC的周长与△DEF的周长相等且AC=DF.则△ABC≌△DEF. 反例:如图.作直线AC=DF.取AC之中垂线l.在l上任取一点B.连结AB.BC.延长AB与CD交于点D.其中CD⊥AC.以A为圆心.r为半径画弧(0<r<AD且r≠AB),再以C为圆心.AD-r为半径画画弧.两弧交于一点E.显然.此时△ABC与△DEF并不全等. 解法二:假命题:在△ABC与△DEF中.若△ABC的周长与△DEF的周长相等且AB=DE.则△ABC≌△DEF. 反例:作法形如法一. 解法三:假命题:在△ABC与△DEF中.若△ABC的周长与△DEF的周长相等且∠A=∠D.则△ABC≌△DEF. 反例:如图.作∠A=∠D.取定长AB.作AB之中垂线L1.交角A的另一边于C,.连接BC则作出△ABC.在AB边上取BI=BC.IH=BC.以J为圆心.FH为半径画弧交AB于G.连结FG.作FG之中垂线L2.交AC于E.连接EF.则作出了△DEF.显然.此时△ABC与△DEF并不全等. 查看更多

 

题目列表(包括答案和解析)

在△ABC中,AB、BC、AC三边的长分别为
5
10
13
,求这个三角形的面积.小华同学在解答这道题时,先画一个正方形网格(每个小正方形的边长为1),再在网格中画出格点△ABC(即△ABC三个顶点都在小正方形的顶点处),如图1所示.这样不需求△ABC的高,而借用网格就能计算出它的面积.这种方法叫做构图法.
(1)△ABC的面积为:
3.5
3.5

(2)若△DEF三边的长分别为
5
8
17
,请在图2的正方形网格中画出相应的△DEF,并利用构图法求出它的面积为
3
3

(3)如图3,△ABC中,AG⊥BC于点G,以A为直角顶点,分别以AB、AC为直角边,向△ABC外作等腰Rt△ABE和等腰Rt△ACF,过点E、F作射线GA的垂线,垂足分别为P、Q.试探究EP与FQ之间的数量关系,并证明你的结论.
(4)如图4,一个六边形的花坛被分割成7个部分,其中正方形PRBA,RQDC,QPFE的面积分别为13m2、25m2、36m2,则六边形花坛ABCDEF的面积是
110
110
m2

查看答案和解析>>

)如图1RtABCAB = AC,点DE是线段AC上两动点,且AD = ECAMBD,垂足为MAM的延长线交BC于点N,直线BD与直线NE相交于点F。试判断△DEF的形状,并加以证明。

说明:⑴如果你经历反复探索,没有找到解决问题的方法,请你把探索过程中的某种思路写出来(要求至少写

3步);⑵在你经历说明⑴的过程之后,可以从下列①、②中选取一个补充或更换已知条件,完成你的证明。

注意:选取①完成证明得10分;选取②完成证明得5分。

①画出将△BAD沿BA方向平移BA长,然后顺时针旋转90°后图形;

②点K在线段BD上,且四边形AKNC为等腰梯形(ACKN,如图2)。

附加题:如图3,若点DE是直线AC上两动点,其他条件不变,试判断△DEF的形状,并说明理由。

查看答案和解析>>

本题提供了两个备选题,请你从20-1和20-2题中任选一个予以解答,多做一个题不多计分.
20-1.如图1,在△ACB中,∠ACB=90°.
(1)作线段AB的垂直平分线,交BC于点D;(要求:尺规作图,保留作图痕迹,不写作法和证明)
(2)若AC=4,BC=8,求∠DAC的正切值.
20-2.知识链接:顶点都在网格线交点处的三角形叫做格点三角形.
如图2,己知格点△ABC.
①请在图中分别画出与△ABC相似且面积最大的格点△DEF.(要求:简述相似的理由)
②计算①中△DEF的面积.

查看答案和解析>>

本题提供了两个备选题,请你从20-1和20-2题中任选一个予以解答,多做一个题不多计分.
20-1.如图1,在△ACB中,∠ACB=90°.
(1)作线段AB的垂直平分线,交BC于点D;(要求:尺规作图,保留作图痕迹,不写作法和证明)
(2)若AC=4,BC=8,求∠DAC的正切值.
20-2.知识链接:顶点都在网格线交点处的三角形叫做格点三角形.
如图2,己知格点△ABC.
①请在图中分别画出与△ABC相似且面积最大的格点△DEF.(要求:简述相似的理由)
②计算①中△DEF的面积.

查看答案和解析>>

如图1,Rt△ABC中AB=AC,点D、E是线段AC上两动点,且AD=EC,AM⊥BD,垂足为M,AM的延长线交BC于点N,直线BD与直线NE相交于点F。试判断△DEF的形状,并加以证明。
说明:(1)如果你经历反复探索,没有找到解决问题的方法,请你把探索过程中的某种思路写出来(要求至少写3步);
(2)在你经历说明⑴的过程之后,可以从下列①、②中选取一个补充或更换已知条件,完成你的证明。 ①画出将△BAD沿BA方向平移BA长,然后顺时针旋转90°后图形;
②点K在线段BD上,且四边形AKNC为等腰梯形(AC∥KN,如图2)。
附加题:如图3,若点D、E是直线AC上两动点,其他条件不变,试判断△DEF的形状,并说明理由。


图1                                          图2                                                      图3

查看答案和解析>>


同步练习册答案