(四)代数式的恒等变形 添括号.去括号.拆项是代数式恒等变形的常用方法.乘法公式.因式分解是代数式恒等变形的工具.待定系数法.配方法也都可进行代数式的恒等变形. 查看更多

 

题目列表(包括答案和解析)

配方法是数学中一种重要的恒等变形的方法,它的应用十分非常广泛,在因式分解、化简根式、解方程、证明等式和不等式、求函数的极值和解析式等方面都经常用到它.下面我们就求函数的极值,介绍一下配方法.
例:已知代数式a2+6a+2,当a=
-3
-3
时,它有最小值,是
-7
-7

解:a2+6a+2=a2+6a+9-9+2=(a+3)2-9+2=(a+3)2-7
因为(a+3)2≥0,所以(a+3)2-7≥-7.
所以当a=-3时,它有最小值,是-7.
参考例题,试求:
(1)填空:当a=
3
3
时,代数式(a-3)2+5有最小值,是
5
5

(2)已知代数式a2+8a+2,当a为何值时,它有最小值,是多少?

查看答案和解析>>

配方法是数学中一种重要的恒等变形的方法,它的应用十分非常广泛,在因式分解、化简根式、解方程、证明等式和不等式、求函数的极值和解析式等方面都经常用到它.下面我们就求函数的极值,介绍一下配方法.
例:已知代数式a2+6a+2,当a=______时,它有最小值,是______.
解:a2+6a+2=a2+6a+9-9+2=(a+3)2-9+2=(a+3)2-7
因为(a+3)2≥0,所以(a+3)2-7≥-7.
所以当a=-3时,它有最小值,是-7.
参考例题,试求:
(1)填空:当a=______时,代数式(a-3)2+5有最小值,是______.
(2)已知代数式a2+8a+2,当a为何值时,它有最小值,是多少?

查看答案和解析>>

配方法是数学中一种重要的恒等变形的方法,它的应用十分非常广泛,在因式分解、化简根式、解方程、证明等式和不等式、求函数的极值和解析式等方面都经常用到它.下面我们就求函数的极值,介绍一下配方法.
例:已知代数式a2+6a+2,当a=______时,它有最小值,是______.
a2+6a+2=a2+6a+9-9+2=(a+3)2-9+2=(a+3)2-7
因为(a+3)2≥0,所以(a+3)2-7≥-7.
所以当a=-3时,它有最小值,是-7.
参考例题,试求:
(1)填空:当a=______时,代数式(a-3)2+5有最小值,是______.
(2)已知代数式a2+8a+2,当a为何值时,它有最小值,是多少?

查看答案和解析>>

大家知道,因式分解是代数中一种重要的恒等变形.应用因式分解的思想方法有时能取得意想不到的效果,如化简:
1
22
+
12×2
=
22
-
12×2
(
22
+
12×2)
(
22
-
12×2
)
=
22
-
12×2
22-12×2
=1-
2
2
1
32
+
22×3
=
32
-
22×3
(
32
+
22×3
)(
32
-
22×3
)
=
32
-
22×3
32-22×3
=
2
2
-
3
3

(1)从以上化简的结果中找出规律,直接写出用n(n是正整数)表示上面规律的式子.
(2)根据以上规律,计算
1
22
+
12×2
+
1
32
+
22×3
+
1
42
+
32×4
+…+
1
102
+
92×10

查看答案和解析>>

大家知道,因式分解是代数中一种重要的恒等变形.应用因式分解的思想方法有时能取得意想不到的效果,如化简:
1
22
+
12×2
=
22
-
12×2
(
22
+
12×2)
(
22
-
12×2
)
=
22
-
12×2
22-12×2
=1-
2
2
1
32
+
22×3
=
32
-
22×3
(
32
+
22×3
)(
32
-
22×3
)
=
32
-
22×3
32-22×3
=
2
2
-
3
3

(1)从以上化简的结果中找出规律,直接写出用n(n是正整数)表示上面规律的式子.
(2)根据以上规律,计算
1
22
+
12×2
+
1
32
+
22×3
+
1
42
+
32×4
+…+
1
102
+
92×10

查看答案和解析>>


同步练习册答案