如图13.已知抛物线经过原点O和x轴上另一点A,它的对称轴x=2 与x轴交于点C.直线y=-2x-1经过抛物线上一点B(-2,m).且与y轴.直线x=2分别交于点D.E. (1)求m的值及该抛物线对应的函数关系式, (2)求证:① CB=CE ,② D是BE的中点, (3)若P(x.y)是该抛物线上的一个动点.是否存在这样的点P,使得PB=PE,若存在.试求出所有符合条件的点P的坐标,若不存在.请说明理由. 26.如图所示.在平面直角坐标系中.矩形的边在轴的负半轴上.边在轴的正半轴上.且..矩形绕点按顺时针方向旋转后得到矩形.点的对应点为点.点的对应点为点.点的对应点为点.抛物线过点. (1)判断点是否在轴上.并说明理由, (2)求抛物线的函数表达式, (3)在轴的上方是否存在点.点.使以点为顶点的平行四边形的面积是矩形面积的2倍.且点在抛物线上.若存在.请求出点.点的坐标,若不存在.请说明理由. 查看更多

 

题目列表(包括答案和解析)

(2013•南沙区一模)如图1,已知抛物线y=
1
2
x2+bx+c与x轴交于A、B两点(点A在点B的左侧),与y轴交于点C,且OB=2OA=4.
(1)求该抛物线的函数表达式;
(2)设P是(1)中抛物线上的一个动点,以P为圆心,R为半径作⊙P,求当⊙P与抛物线的对称轴l及x轴均相切时点P的坐标.
(3)动点E从点A出发,以每秒1个单位长度的速度向终点B运动,动点F从点B出发,以每秒
2
个单位长度的速度向终点C运动,过点E作EG∥y轴,交AC于点G(如图2).若E、F两点同时出发,运动时间为t.则当t为何值时,△EFG的面积是△ABC的面积的
1
3

查看答案和解析>>

如图1,已知抛物线的顶点为A(0,1),矩形CDEF的顶点C、F在抛物线上,点D、E在x轴上,CF交y轴于点B(0,2),且其面积为8:
(1)此抛物线的解析式;
(2)如图2,若点P为所求抛物线上的一动点,试判断以点P为圆心,PB为半径的圆与x轴的位置关系,并说明理由.
(3)如图2,设点P在抛物线上且与点A不重合,直线PB与抛物线的另一个交点为Q,过点P、Q分别作x轴的垂线,垂足分别为N、M,连接PO、QO.求证:△QMO∽△PNO.
精英家教网

查看答案和解析>>

如图1,已知抛物线的顶点为A(2,1),且经过原点O,与x轴的另一个交点为B.
(1)求抛物线的解析式;
(2)若点C在抛物线的对称轴上,点D在抛物线上,且以O、C、D、B四点为顶点的四边形为平行四边形,求D点的坐标;
(3)连接OA、AB,如图2,在x轴下方的抛物线上是否存在点P,使得△OBP与△OAB相似?若存在,求出P点的坐标;若不存在,说明理由.
精英家教网

查看答案和解析>>

如图1,已知抛物线y=ax2的顶点为P,A、B是抛物线上两点,AB∥x轴,△PAB是等边三角形.
(1)若点B的横坐标为
3
,求点B、A的坐标及抛物线的函数表达式;
(2)①如图2,将(1)中抛物线进行平移,使点P的坐标变为(m,n),其他条件不变,请猜想△PAB的边长;
②若将抛物线“y=ax2”,改为抛物线“y=2x2-8x-2”,其他条件不变,求△PAB的边长;
(3)已知等边△MCD,CD∥x轴,抛物线l经过△MCD 的三个顶点,若点M的坐标为(m,n),△MCD的边长为2b,请直接写出抛物线l的函数表达式.(用含m、n、b的式子表示)
精英家教网

查看答案和解析>>

如图1,已知抛物线交x轴于A、B两点,交y轴于点C(0,2),此抛物线的对称轴为直线x=2,点A的坐标为(1,0).
(1)求B点坐标以及△ABC的面积;
(2)求抛物线的解析式;
(3)过点C作x轴的平行线交此抛物线的对称轴于点D,你能判断四边形ABDC是什么四边形吗?并证明你的结论;
(4)若一个动点P自OC的中点M出发,先到达x轴上的某点(设为点E),再到达抛物线的对称轴上某点(设为点F),最后运动到点C,求使点P运动的总路径(ME+EF+FC)最短的点E、F的坐标,并求出这个最短总路径的长.
精英家教网

查看答案和解析>>


同步练习册答案