如图.在平面直角坐标系中.抛物线=-++经过A.B(.0). C(.0)三点.且-=5. (1)求.的值, (2)在抛物线上求一点D.使得四边形BDCE是以BC为对 角线的菱形, (3)在抛物线上是否存在一点P.使得四边形BPOH是以OB为对角线的菱形?若存在.求出点P的坐标.并判断这个菱形是否为正方形?若不存在.请说明理由. 解: 解:(1)解法一: ∵抛物线=-++经过点A. ∴=-4 --1分 又由题意可知..是方程-++=0的两个根. ∴+=. =-=6··································································· 2分 由已知得(-)=25 又(-)=(+)-4=-24 ∴ -24=25 解得=± ··········································································································· 3分 当=时.抛物线与轴的交点在轴的正半轴上.不合题意.舍去. ∴=-. ·········································································································· 4分 解法二:∵.是方程-++c=0的两个根. 即方程2-3+12=0的两个根. ∴=.··········································································· 2分 ∴-==5. 解得 =±······························································································· 3分 (2)∵四边形BDCE是以BC为对角线的菱形.根据菱形的性质.点D必在抛物线的对称轴上. 5分 又∵=---4=-(+)+ ································· 6分 ∴抛物线的顶点(-.)即为所求的点D.······································· 7分 (3)∵四边形BPOH是以OB为对角线的菱形.点B的坐标为. 根据菱形的性质.点P必是直线=-3与 抛物线=---4的交点. ···························································· 8分 ∴当=-3时.=-×(-3)-×(-3)-4=4. ∴在抛物线上存在一点P.使得四边形BPOH为菱形. ·················· 9分 四边形BPOH不能成为正方形.因为如果四边形BPOH为正方形.点P的坐标只能是.但这一点不在抛物线上.······································································································· 10分 查看更多

 

题目列表(包括答案和解析)

(2013•沙河口区一模)如图,在平面直角坐标系中,坐标是(0,-3)的点是(  )

查看答案和解析>>

如图,在平面直角坐标系中,点A,B,C,P的坐标分别为(0,2),(3,2),(2,3),(1,1).
(1)请在图中画出△A′B′C′,使得△A′B′C′与△ABC关于点P成中心对称;
(2)若一个二次函数的图象经过(1)中△A′B′C′的三个顶点,求此二次函数的关系式.精英家教网

查看答案和解析>>

已知:如图,在平面直角坐标系中,0为坐标原点,直线y=x+3与x、y轴分别相交于点A、B,点C在y轴的负半轴上,且∠CAO=30°,点D在线段AC的延长线上,且CD=CO,连接OD、BD,BD交x轴于点E.
(1)求直线AC的解析式;
(2)求证:OB=OD;
(3)图中有几对相似三角形(不添加其他字母和线段)请写出所有的相似三角形,并选择其中的一对加以证明.
精英家教网

查看答案和解析>>

精英家教网如图,在平面直角坐标系中,已知点B(4,2),BA⊥x轴于A.
(1)求tan∠BOA的值;
(2)将点B绕原点逆时针方向旋转90°后记作点C,求点C的坐标;
(3)将△OAB平移得到△O′A′B′,点A的对应点是A′,点B的对应点B'的坐标为(2,-2),在坐标系中作出△O′A′B′,并写出点O′、A′的坐标.

查看答案和解析>>

如图,在平面直角坐标系中,正方形ABCO的点A、C分别在x轴、y轴上,点B坐标为(6,6)连接AC.抛物线y=x2+bx+c经过B、C两点.
(1)求抛物线的解析式.
(2)若动点E从原点出发,以每秒一个单位的速度,沿折线O-C-B-A做匀速运动,同时点F从原点出发,以相同的速度向x正半轴方向做匀速运动,过点E作ED⊥x轴于点D,当点E停止运动时,点F也停止运动.设△EFD的面积为S,运动时间为x(0<x<18),试写出S与x的函数关系式,并求出S的最大值.
(3)P是直线AC上的点,在抛物线上是否存在点Q,使以0、C、P、Q为顶点的四边形是菱形?若存在,请直接写出点Q的坐标;若不存在,请说明理由.

查看答案和解析>>


同步练习册答案