26.如图16.在平面直角坐标系中.直线与轴交于点.与轴交于点.抛物线经过三点. (1)求过三点抛物线的解析式并求出顶点的坐标, (2)在抛物线上是否存在点.使为直角三角形.若存在.直接写出点坐标,若不存在.请说明理由, (3)试探究在直线上是否存在一点.使得的周长最小.若存在.求出点的坐标,若不存在.请说明理由. 解:(1)直线与轴交于点.与轴交于点. .························································································· 1分 点都在抛物线上. 抛物线的解析式为························································ 3分 顶点······························································································· 4分 (2)存在··············································································································· 5分 ············································································································· 7分 ············································································································ 9分 (3)存在·············································································································· 10分 理由: 解法一: 延长到点.使.连接交直线于点.则点就是所求的点. ····················································································· 11分 过点作于点. 点在抛物线上. 在中.. .. 在中.. ..··············································· 12分 设直线的解析式为 解得 ································································································ 13分 解得 在直线上存在点.使得的周长最小.此时.··· 14分 解法二: 过点作的垂线交轴于点.则点为点关于直线的对称点.连接交于点.则点即为所求.················································································ 11分 过点作轴于点.则.. . 同方法一可求得. 在中...可求得. 为线段的垂直平分线.可证得为等边三角形. 垂直平分. 即点为点关于的对称点.············································· 12分 设直线的解析式为.由题意得 解得 ································································································ 13分 解得 在直线上存在点.使得的周长最小.此时.··· 14分 查看更多

 

题目列表(包括答案和解析)

如图16,在平面直角坐标系中,直线轴交于点,与轴交于点,抛物线经过三点.

(1)求过三点抛物线的解析式并求出顶点的坐标;

(2)在抛物线上是否存在点,使为直角三角形,若存在,直接写出点坐标;若不存在,请说明理由;

(3)试探究在直线上是否存在一点,使得的周长最小,若存在,求出点的坐标;若不存在,请说明理由.

查看答案和解析>>

如图1,在平面直角坐标系中,点A(4,4),点B、C分别在x轴、y轴的正半轴上,S四边形OBAC=16.
(1)∠COA的值为
45°
45°

(2)求∠CAB的度数;
(3)如图2,点M、N分别是x轴正半轴及射线OA上一点,且OH⊥MN的延长线于H,满足∠HON=∠NMO,请探究两条线段MN、OH之间的数量关系,并给出证明.

查看答案和解析>>

精英家教网如图1,在平面直角坐标系中,抛物线y=ax2+c与x轴正半轴交于点F(16,0),与y轴正半轴交于点E(0,16),边长为16的正方形ABCD的顶点D与原点O重合,顶点A与点E重合,顶点C与点F重合.
(1)求抛物线的函数表达式;
(2)如图2,若正方形ABCD在平面内运动,并且边BC所在的直线始终与x轴垂直,抛物线始终与边AB交于点P且同时与边CD交于点Q(运动时,点P不与A,B两点重合,点Q不与C,D两点重合).设点A的坐标为(m,n)(m>0).
①当PO=PF时,分别求出点P和点Q的坐标;
②在①的基础上,当正方形ABCD左右平移时,请直接写出m的取值范围;
③当n=7时,是否存在m的值使点P为AB边的中点?若存在,请求出m的值;若不存在,请说明理由.

查看答案和解析>>

如图1,在平面直角坐标系中,拋物线y=ax2+c与x轴正半轴交于点F(16,0)、与y轴正半轴交于点E(0,16),边长为16的正方形ABCD的顶点D与原点O重合,顶点A与点E重合,顶点C与点F重合;
  
(1) 求拋物线的函数表达式;
(2) 如图2,若正方形ABCD在平面内运动,并且边BC所在的直线始终与x轴垂直,抛物线始终与边AB交于点P且同时与边CD交于点Q(运动时,点P不与A、B两点重合,点Q不与C、D两点重合)。设点A的坐标为(m,n) (m>0)。
j当PO=PF时,分别求出点P和点Q的坐标;
k在j的基础上,当正方形ABCD左右平移时,请直接写出m的取值范围;
l当n=7时,是否存在m的值使点P为AB边中点。若存在,请求出m的值;若不存在,请说明理由。

查看答案和解析>>

如图1,在平面直角坐标系中,拋物线y=ax2+c与x轴正半轴交于点F(16,0)、与y轴正半轴交于点E(0,16),边长为16的正方形ABCD的顶点D与原点O重合,顶点A与点E重合,顶点C与点F重合;

  

(1) 求拋物线的函数表达式;

(2) 如图2,若正方形ABCD在平面内运动,并且边BC所在的直线始终与x轴垂直,抛物线始终与边AB交于点P且同时与边CD交于点Q(运动时,点P不与A、B两点重合,点Q不与C、D两点重合)。设点A的坐标为(m,n) (m>0)。

j 当PO=PF时,分别求出点P和点Q的坐标;

k 在j的基础上,当正方形ABCD左右平移时,请直接写出m的取值范围;

l 当n=7时,是否存在m的值使点P为AB边中点。若存在,请求出m的值;若不存在,请说明理由。

 

查看答案和解析>>


同步练习册答案