已知:如图所示的两条抛物线的解析式分别是 .(其中为常数.且). (1)请写出三条与上述抛物线有关的不同类型的结论, (2)当时.设与轴分别交于两点(在的左边).与轴分别交于两点(在的左边).观察四点坐标.请写出一个你所得到的正确结论.并说明理由, (3)设上述两条抛物线相交于两点.直线都垂直于轴.分别经过两点.在直线之间.且与两条抛物线分别交于两点.求线段的最大值. (1)解:答案不唯一.只要合理均可.例如: ①抛物线开口向下.或抛物线开口向上, ②抛物线的对称轴是.或抛物线的对称轴是, ③抛物线经过点.或抛物线经过点, ④抛物线与的形状相同.但开口方向相反, ⑤抛物线与都与轴有两个交点, ⑥抛物线经过点或抛物线经过点, 等等.··························································································································· 3分 (2)当时..令. 解得.································································································ 4分 .令.解得.···························· 5分 ①点与点对称.点与点对称, ②四点横坐标的代数和为0, ③(或).················································ 6分 (3). 抛物线开口向下.抛物线开口向上.·················· 7分 根据题意.得.················· 8分 当时.的最大值是2.··············································································· 9分 说明:1.第(1)问每写对一条得1分, 查看更多

 

题目列表(包括答案和解析)

已知:如图所示的两条抛物线的解析式分别是y1=-ax2-ax+1,y2=ax2-ax-1(其中a为常数,且a>0).
(1)请写出三条与上述抛物线有关的不同类型的结论;
(2)当a=
12
时,设y1=-ax2-ax+1与x轴分别交于M,N两点(M在N的左边),y2=ax2-ax-1与x轴分别交于E,F两点(E在F的左边),观察M,N,E,F四点坐标,请写出一个你所得到的正确结论,并说明理由;
(3)设上述两条抛物线相交于A,B两点,直线l,l1,l2都垂直于x轴,l1,l2分别经过A,B两点,l在直线l1精英家教网,l2之间,且l与两条抛物线分别交于C,D两点,求线段CD的最大值?

查看答案和解析>>

已知:如图所示的两条抛物线的解析式分别是y1=-ax2-ax+1,y2=ax2-ax-1(其中a为常数,且a>0).
(1)请写出三条与上述抛物线有关的不同类型的结论;
(2)当时,设y1=-ax2-ax+1与x轴分别交于M,N两点(M在N的左边),y2=ax2-ax-1与x轴分别交于E,F两点(E在F的左边),观察M,N,E,F四点坐标,请写出一个你所得到的正确结论,并说明理由;
(3)设上述两条抛物线相交于A,B两点,直线l,l1,l2都垂直于x轴,l1,l2分别经过A,B两点,l在直线l1,l2之间,且l与两条抛物线分别交于C,D两点,求线段CD的最大值?

查看答案和解析>>

已知:如图所示的两条抛物线的解析式分别是(其中a为常数,且a>0)
(1)对于抛物线y1、y2请你分别写出三条不同的结论;
(2)当时,设与x轴分别交于M、N两点(M在N的左边),y2=ax2-ax-1与x轴分别交于E、F两点(E在F的左边),观察M、N、E、F四点坐标,请写出一个你所得到的正确结论,并说明理由。
(3)设上述两条抛物线相交于A、B两点,直线都垂直于x轴,分别经过A、B两点,在直线之间,且与两条抛物线分别交于C、D两点,求线段CD长的最大值。

查看答案和解析>>

已知:如图所示的两条抛物线的解析式分别是y1=-ax2-ax+1,y2=ax2-ax-1(其中a为常数,且a>0).
(1)请写出三条与上述抛物线有关的不同类型的结论;
(2)当数学公式时,设y1=-ax2-ax+1与x轴分别交于M,N两点(M在N的左边),y2=ax2-ax-1与x轴分别交于E,F两点(E在F的左边),观察M,N,E,F四点坐标,请写出一个你所得到的正确结论,并说明理由;
(3)设上述两条抛物线相交于A,B两点,直线l,l1,l2都垂直于x轴,l1,l2分别经过A,B两点,l在直线l1,l2之间,且l与两条抛物线分别交于C,D两点,求线段CD的最大值?

查看答案和解析>>

已知:如图所示的两条抛物线的解析式分别是y1=-ax2-ax+1,y2=ax2-ax-1(其中a为常数,且a>0).

(1)请写出三条与上述抛物线有关的不同类型的结论;

(2)当a=时,设y1=-ax2-ax+1与x轴分别交于M,N两点(M在N的左边),y2=ax2-ax-1与x轴分别交于E,F两点(E在F的左边),观察M,N,E,F四点坐标,请写出一个你所得到的正确结论,并说明理由;

(3)设上述两条抛物线相交于A,B两点,直线ll1l2都垂直于x轴,l1l2分别经过A,B两点,l在直线l1l2之间,且l与两条抛物线分别交于C,D两点,求线段CD的最大值.

查看答案和解析>>


同步练习册答案