24. 如图10.已知点A的坐标是.点B的坐标是(9.0).以AB为直径作⊙O′.交y轴的负半轴于点C.连接AC.BC.过A.B.C三点作抛物线. (1)求抛物线的解析式, (2)点E是AC延长线上一点.∠BCE的平分线CD交⊙O′于点D.连结BD.求直线BD的解析式, 的条件下.抛物线上是否存在点P.使得∠PDB=∠CBD?如果存在.请求出点P的坐标,如果不存在.请说明理由. ∵以AB为直径作⊙O′.交y轴的负半轴于点C. ∴∠OCA+∠OCB=90°. 又∵∠OCB+∠OBC=90°. ∴∠OCA=∠OBC. 又∵∠AOC= ∠COB=90°. ∴ΔAOC∽ ΔCOB.························································································ 1分 ∴. 又∵A. ∴.解得OC=3. ∴C. ······················································································································ 3分 设抛物线解析式为y=a. ∴–3=a.解得a=. ∴二次函数的解析式为y=.即y=x2–x–3.···························· 4分 (2) ∵AB为O′的直径.且A. ∴OO′=4.O′(4.0).····················································································· 5分 ∵点E是AC延长线上一点.∠BCE的平分线CD交⊙O′于点D. ∴∠BCD=∠BCE=×90°=45°. 连结O′D交BC于点M.则∠BO′D=2∠BCD=2×45°=90°.OO′=4.O′D=AB=5. ∴D.································································································· 6分 ∴设直线BD的解析式为y=kx+b ∴··························································· 7分 解得 ∴直线BD的解析式为y=x–9.····································· 8分 (3) 假设在抛物线上存在点P.使得∠PDB=∠CBD. 解法一:设射线DP交⊙O′于点Q.则. 分两种情况: ①∵O′.C. ∴把点C.D绕点O′逆时针旋转90°.使点D与点B重合.则点C与点Q1重合. 因此.点Q1符合. ∵D.Q1. ∴用待定系数法可求出直线DQ1解析式为y=x–.··································· 9分 解方程组得 ∴点P1坐标为(.).[坐标为(.)不符合题意.舍去]. ······················································································································ 10分 ②∵Q1. ∴点Q1关于x轴对称的点的坐标为Q2(7.4)也符合. ∵D.Q2(7.4). ∴用待定系数法可求出直线DQ2解析式为y=3x–17.······································ 11分 解方程组得 ∴点P2坐标为不符合题意.舍去]. ······················································································································ 12分 ∴符合条件的点P有两个:P1(.).P2. 解法二:分两种情况: ①当DP1∥CB时.能使∠PDB=∠CBD. ∵B. ∴用待定系数法可求出直线BC解析式为y=x–3. 又∵DP1∥CB.∴设直线DP1的解析式为y=x+n. 把D代入可求n= –. ∴直线DP1解析式为y=x–.························· 9分 解方程组得 ∴点P1坐标为(.).[坐标为(.)不符合题意.舍去]. ······················································································································ 10分 ②在线段O′B上取一点N.使BN=DM时.得ΔNBD≌ΔMDB(SAS).∴∠NDB=∠CBD. 由①知.直线BC解析式为y=x–3. 取x=4.得y= –.∴M(4.–).∴O′N=O′M=.∴N(.0). 又∵D. ∴直线DN解析式为y=3x–17.······································································ 11分 解方程组得 ∴点P2坐标为不符合题意.舍去]. ······················································································································ 12分 ∴符合条件的点P有两个:P1(.).P2. 解法三:分两种情况: ①求点P1坐标同解法二.··············································································· 10分 ②过C点作BD的平行线,交圆O′于G, 此时.∠GDB=∠GCB=∠CBD. 由(2)题知直线BD的解析式为y=x–9, 又∵ C ∴可求得CG的解析式为y=x–3, 设G.作GH⊥x轴交与x轴与H. 连结O′G,在Rt△O′GH中.利用勾股定理可得.m=7. 由D可得. DG的解析式为.··········································································· 11分 解方程组得 ∴点P2坐标为不符合题意.舍去].························ 12分 ∴符合条件的点P有两个:P1(.).P2. 说明:本题解法较多.如有不同的正确解法.请按此步骤给分. 查看更多

 

题目列表(包括答案和解析)

(1)(
1
3
+
6
)-2-(
5
-
10
)2

(2)(-9
1
2
-
3
×
6
1
3
3

(3)如图1:AD⊥BC,EF⊥BC,∠1=∠2,说明AB∥DM.
(4)如图2:已知点A(-4,4),B(-2,-2),求△AOB的面积.

查看答案和解析>>

28、(1)如图1,已知点P在正三角形ABC的边BC上,以AP为边作正三角形APQ,连接CQ.
①求证:△ABP≌△ACQ;
②若AB=6,点D是AQ的中点,直接写出当点P由点B运动到点C时,点D运动路线的长.
(2)已知,△EFG中,EF=EG=13,FG=10.如图2,把△EFG绕点E旋转到△EF′G′的位置,点M是边EF′与边FG的交点,点N在边EG′上且EN=EM,连接GN.求点E到直线GN的距离.

查看答案和解析>>

(2011•下关区一模)(1)如图1,已知点P在正三角形ABC的边BC上,以AP为边作正三角形APQ,连接CQ.
①求证:△ABP≌△ACQ;
②若AB=6,点D是AQ的中点,直接写出当点P由点B运动到点C时,点D运动路线的长.
(2)已知,△EFG中,EF=EG=13,FG=10.如图2,把△EFG绕点E旋转到△EF'G'的位置,点M是边EF'与边FG的交点,点N在边EG'上且EN=EM,连接GN.求点E到直线GN的距离.

查看答案和解析>>

.(10分)(1)如图1,已知点P在正三角形ABC的边BC上,以AP为边作正三角形APQ,连接CQ.

①求证:△ABP≌△ACQ;

②若AB=6,点D是AQ的中点,直接写出当点P由点B运动到点C时,点D运动路线的长.

(2)已知,△EFG中,EF=EG=13,FG=10.如图2,把△EFG绕点E旋转到△EF'G'的位置,点M是边EF'与边FG的交点,点N在边EG'上且EN=EM,连接GN.求点E到直线GN的距离.

 

查看答案和解析>>

.(10分)(1)如图1,已知点P在正三角形ABC的边BC上,以AP为边作正三角形APQ,连接CQ.
①求证:△ABP≌△ACQ;
②若AB=6,点D是AQ的中点,直接写出当点P由点B运动到点C时,点D运动路线的长.
(2)已知,△EFG中,EF=EG=13,FG=10.如图2,把△EFG绕点E旋转到△EF'G'的位置,点M是边EF'与边FG的交点,点N在边EG'上且EN=EM,连接GN.求点E到直线GN的距离.

查看答案和解析>>


同步练习册答案