28.如图20.在平面直角坐标系中.四边形OABC是矩形.点B的坐标为(4.3).平行于对角线AC的直线m从原点O出发.沿x轴正方向以每秒1个单位长度的速度运动.设直线m与矩形OABC的两边分别交于点M.N.直线m运动的时间为t(秒). (1) 点A的坐标是 .点C的坐标是 , (2) 当t= 秒或 秒时.MN=AC, (3) 设△OMN的面积为S.求S与t的函数关系式, 中得到的函数S有没有最大值?若有.求出最大值,若没有.要说明理由. (08甘肃白银等9市28题解析)28. 本小题满分12分 解:, ·················································································· 2分 (2) 2.6, ········································································································· 4分 (3) 当0<t≤4时.OM=t. 由△OMN∽△OAC.得. ∴ ON=.S=. ···································· 6分 当4<t<8时. 如图.∵ OD=t.∴ AD= t-4. 方法一: 由△DAM∽△AOC.可得AM=.∴ BM=6-. ··························· 7分 由△BMN∽△BAC.可得BN==8-t.∴ CN=t-4. ·································· 8分 S=矩形OABC的面积-Rt△OAM的面积- Rt△MBN的面积- Rt△NCO的面积 =12--(8-t)(6-)- =. ··························································································· 10分 方法二: 易知四边形ADNC是平行四边形.∴ CN=AD=t-4.BN=8-t.·································· 7分 由△BMN∽△BAC.可得BM==6-.∴ AM=.······ 8分 以下同方法一. (4) 有最大值. 方法一: 当0<t≤4时. ∵ 抛物线S=的开口向上.在对称轴t=0的右边. S随t的增大而增大. ∴ 当t=4时.S可取到最大值=6, ················ 11分 当4<t<8时. ∵ 抛物线S=的开口向下.它的顶点是(4.6).∴ S<6. 综上.当t=4时.S有最大值6. ······································································· 12分 方法二: ∵ S= ∴ 当0<t<8时.画出S与t的函数关系图像.如图所示. ······························ 11分 显然.当t=4时.S有最大值6. ··································································· 12分 说明:只有当第问只回答“有最大值 无其它步骤.可给1分,否则.不给分. 查看更多

 

题目列表(包括答案和解析)

(2013•梅列区模拟)如图,△AOB在平面直角坐标系中,OB在x轴上,∠B=90°,点A的坐标为(2,3),将△AOB绕点A逆时针旋转90°,点O的对应点C恰好落在双曲线y=
k
x
(x>0)上,则k的值为(  )

查看答案和解析>>

15、如图,△ABC在平面直角坐标系中,若将△ABC绕点C顺时针旋转90°后得△A′B′C′.
(1)请在图中画出△A′B′C′,并写出点A′、B′、C′的坐标;
(2)画出△ABC关于x轴对称的△A1B1C1

查看答案和解析>>

如图,△ABC在平面直角坐标系中,三个顶点的坐标分别为A(3,0)、B(0,-4)、C(1,0)
(1)△ABC以C为旋转中心,逆时针旋转90°,得到△A1B1C,在如图的坐标系中画出△A1B1C;
(2)P(a,b)是△ABC的边AC上一点,△ABC经过平移后P的对应点是P2(a-4,b-2),在如图的坐标系中画出平移后的△A2B2C2,并直接写出点B2的坐标.

查看答案和解析>>

精英家教网如图,△ABC在平面直角坐标系中,点A(3,2)、B(0,2)、C(1,0).解答问题:
(1)请按要求对△ABC作如下变换:
①将△ABC绕点O逆时针旋转90°得到△A1B1C1
②以点O为位似中心,位似比为2:1,将△ABC在位似中心的异侧进行放大得到△A2B2C2;并写出点A1,A2的坐标:
 
 

(2)在△ABC内,点P的坐标为(a,b),在△A1B1C1中与之对应的点为Q,在△A2B2C2中与之对应的点为R.则S△PQR=
 
.(用含a,b的代数式表示)

查看答案和解析>>

如图,△ABC在平面直角坐标系中,点A(3,-2),B(4,3),C(1,0)解答问题:
(1)请按要求对△ABC作如下变换
①将△ABC绕点O逆时针旋转90°得到△A1B1C1
②以点O为位似中心,位似比为2:1,将△ABC在位似中心的异侧进行放大得到△A2B2C2
(2)写出点A1,B1的坐标:
(2,3)
(2,3)
(-3,4)
(-3,4)

(3)写出点A2,B2的坐标:
(-6,4)
(-6,4)
(-8,-6)
(-8,-6)

查看答案和解析>>


同步练习册答案