26.如图.Rt△ABO的两直角边OA.OB分别在x轴的负半轴和y轴的正半轴上.O为坐标原点.A.B两点的坐标分别为(.0).(0.4).抛物线经过B点.且顶点在直线上. (1)求抛物线对应的函数关系式, (2)若△DCE是由△ABO沿x轴向右平移得到的.当四边形ABCD是菱形时.试判断点C和点D是否在该抛物线上.并说明理由, (3)若M点是CD所在直线下方该抛物线上的一个动点.过点M作MN平行于y轴交CD于点N.设点M的横坐标为t.MN的长度为l.求l与t之间的函数关系式.并求l取最大值时.点M的坐标. 四川省眉山市2010年初中学业暨高中阶段教育学校招生考试 查看更多

 

题目列表(包括答案和解析)

精英家教网如图,Rt△ABO的两直角边OA、OB分别在x轴的负半轴和y轴的正半轴上,O为坐标原点,A、B两点的坐标分别为(-3,0)、(0,4),抛物线y=
2
3
x2
+bx+c经过B点,且顶点在直线x=
5
2
上.
(1)求抛物线对应的函数关系式;
(2)若△DCE是由△ABO沿x轴向右平移得到的,当四边形ABCD是菱形时,试判断点C和点D是否在该抛物线上,并说明理由;
(3)在(2)的前提下,若M点是CD所在直线下方该抛物线上的一个动点,过点M作MN平行于y轴交CD于点N.设点M的横坐标为t,MN的长度为l.求l与t之间的函数关系式,并求l取最大值时,点M的坐标.

查看答案和解析>>

如图,Rt△ABO的两直角边OA、OB分别在x轴的负半轴和y轴的正半轴上,O为坐标原点,A、B两点的坐标分别为(-3,0)、(0,4),抛物线y=
2
3
x2+bx+c经过B点,且顶点在直线x=
5
2
上.
(1)求抛物线对应的函数关系式;
(2)若△DCE是由△ABO沿x轴向右平移得到的,当四边形ABCD是菱形时,试判断点C和点D是否在该抛物线上,并说明理由.

查看答案和解析>>

如图,Rt△ABO的两直角边OA、OB分别在x轴的负半轴和y轴的正半轴上,点O为坐标原点,A、B两点的坐标分别为(-3,0)、(0,4),抛物线y=
2
3
x2-
10
3
x+c
经过B点.
(1)请写出抛物线对应的函数关系式;
(2)若△DCE是由△ABO沿x轴向右平移得到的,当四边形ABCD是菱形时,试判断点C和点D是否在该抛物线上,并说明理由;
(3)在(2)的条件下,线段CD下方的抛物线上有一个动点M.过点M作MN平行于y轴交CD于点N.设点M的横坐标为t,MN的长度为l.求l与t之间的函数关系式,并求l取最大值时,点M的坐标.

查看答案和解析>>

作业宝如图,Rt△ABO的两直角边OA、OB分别在x轴的负半轴和y轴的正半轴上,点O为坐标原点,A、B两点的坐标分别为(-3,0)、(0,4),抛物线数学公式经过B点.
(1)请写出抛物线对应的函数关系式;
(2)若△DCE是由△ABO沿x轴向右平移得到的,当四边形ABCD是菱形时,试判断点C和点D是否在该抛物线上,并说明理由;
(3)在(2)的条件下,线段CD下方的抛物线上有一个动点M.过点M作MN平行于y轴交CD于点N.设点M的横坐标为t,MN的长度为l.求l与t之间的函数关系式,并求l取最大值时,点M的坐标.

查看答案和解析>>

如图,RtABO的两直角边OAOB分别在x轴的负半轴和y轴的正半轴上,O为坐标原点,AB两点的坐标分别为(-3,0)、(0,4),抛物线yx2bxc经过点B,且顶点在直线x上.

(1)求抛物线对应的函数关系式;

(2)若把△ABO沿x轴向右平移得到△DCE,点ABO的对应点分别是DCE,当四边形ABCD是菱形时,试判断点C和点D是否在该抛物线上,并说明理由;

(3)在(2)的条件下,连接BD,已知对称轴上存在一点P使得△PBD的周长最小,求出P点的坐标;

(4)在(2)、(3)的条件下,若点M是线段OB上的一个动点(点M与点OB不重合),过点M作∥BDx轴于点N,连接PMPN,设OM的长为t,△PMN的面积为S,求St的函数关系式,并写出自变量t的取值范围,S是否存在最大值?若存在,求出最大值和此时M点的坐标;若不存在,说明理由.

查看答案和解析>>


同步练习册答案