如图8.将一矩形纸片ABCD折叠.使点C与点A重合.点D落在点E处.折痕为MN.图中有全等三角形吗?若有.请找出并证明. 19.在一块长16m.宽12m的矩形荒地上.要建造一个花园.要求花园面积是荒地面积的一半.下面分别是小华与小芳的设计方案. (1)同学们都认为小华的方案是正确的.但对小芳方案是否符合条件有不同意见.你认为小芳的方案符合条件吗?若不符合.请用方程的方法说明理由. (2)你还有其他的设计方案吗?请在图9-3中画出你所设计的草图.将花园部分涂上阴影.并加以说明. 查看更多

 

题目列表(包括答案和解析)

如图1,将一张直角梯形纸片沿虚线剪开,得到矩形和直角三角形两张纸片,测得AB=5,AD=4,对两张纸片进行如下操作:
将Rt△EFG的顶点G移到矩形的顶点B处,再将直角三角形绕点B顺时针旋转使点E落在CD边上,此时,EF恰好经过点A(如图2).

(1)求证:∠DEA=∠BEF;
(2)求线段BF的长;
(3)将直角三角形的边AB重合,然后将Rt△EFG沿直线BC向右平移(如图3),至F点与C点重合时停止.在平移过程中,设G点平移的距离为x,两纸片重叠部分面积为y,求在平移过程中,y与x的函数关系式.

查看答案和解析>>

如图,现将一张矩形ABCD的纸片一角折叠,若能使点D落在AB边上F处,折痕为CE,恰好∠AEF=精英家教网60°,延长EF交CB的延长线于点G.
(1)求证:△CEG是等边三角形;
(2)若矩形的一边AD=3,求另一边AB的长.

查看答案和解析>>

根据所给的基本材料,请你进行适当的处理,编写一道综合题.
编写要求:①提出具有综合性、连续性的三个问题;②给出正确的解答过程;③写出编写意图和学生答题情况的预测.
材料①:如图,先把一矩形纸片ABCD对折,得到折痕MN,然后把B点叠在折痕线上,得到△ABE,再过点B把矩形ABCD第三次折叠,使点D落在直线AD上,得到折痕PQ.当沿着BE第四次将该纸片折叠后,点A就会落在EC上.
精英家教网
材料②:已知AC是∠MAN的平分线.
(1)在图1中,若∠MAN=120°,∠ABC=ADC=90°,求证:AB+AD=AC;
(2)在图2中,若∠MAN=120°,∠ABC+∠ADC=180°,则(1)中的结论是否仍然成立?若成立,请给出证明;若不成立,请说明理由;
(3)在图3中:若∠MAN=α(0°<α<180°),∠ABC+∠ADC=180°,
则AB+AD=
 
AC(用含α的三角函数表示).
精英家教网
材料③:
已知:如图甲,在Rt△ACB中,∠C=90°,AC=4cm,BC=3cm,点P由B出发沿线段BA向点A匀速运动,速度为1cm/s;点Q由A出发沿线段AC向点C匀速运动,速度为2cm/s;连接PQ,设运动的时间为t(s)(0<t<2).
精英家教网
编写试题选取的材料是
 
(填写材料的序号)
编写的试题是:(1)设△AQP的面积为y(cm2),求y与t之间的函数关系式.
(2)是否存在某一时刻t,使线段PQ恰好把Rt△ACB的周长和面积同时平分?若存在,求出此时t的值.
(3)如图(2),连接PC,并把△PQC沿QC翻折得到四边形PQP'C.是否存在某一时刻t,使四边形PQP'C为菱形?若存在,求出此时菱形的边长.
试题解答(写出主要步骤即可):(1)过点Q作QD⊥AP于点D,证△AQD∽△ABC,利用相似性质及面积解答;
(2)分别求得Rt△ACB的周长和面积,由周长求出t,代入函数解析式验证;
(3)利用余弦定理得出PC、PQ,联立方程,求得t,再代入PC解得答案.

查看答案和解析>>

如图,若将一张矩形风景画固定在相框架上,画四周留有相等宽度,则外框矩形ABCD与内框矩形EFGH(  )

查看答案和解析>>

如图1,将一张矩形纸片对折,然后沿虚线剪切,得到两个全等三角形纸片:△ABC≌△A1B1C.将这两个三角形按如图2摆放,使点A1与点B重合,点B1在AC边的延长线上,此时AB1∥C1B连接CC1交BB1于点E.
作业宝
﹙1﹚求证:AA1=CC1
﹙2﹚试判断∠B1C1C与∠B1BC是否相等,并说明理由.
(3)当△ABC满足________时,BB1⊥CC1.(只能填写一个条件)

查看答案和解析>>


同步练习册答案