23如图.已知矩形ABCD内接于⊙O.BD为⊙O直径,将△BCD沿BD所在的直线翻折后.得到点C的对应点N仍在⊙O上,BN交AD与点M.若∠AMB=60°.⊙O的半径是3cm. (1)求点O到线段ND的距离. (2)过点A作BN的平行线EF.判断直线EF与⊙O的位置关系并说明理由. 24.小张骑自行车匀速从甲地到乙地.在途中休息了一段时间后.仍按原速行驶.他距乙地的距离与时间的关系如图中折线所示.小李骑摩托车匀速从乙地到甲地.比小张晚出发一段时间.他距乙地的距离与时间的关系如图中线段AB所示. (1)小李到达甲地后.再经过___小时小张到达乙地,小张骑自行车的速度是___千米/小时. (2)小张出发几小时与小李相距15千米? (3)若小李想在小张休息期间与他相遇.则他出发的时间x应在什么范围? 查看更多

 

题目列表(包括答案和解析)

如图,已知正三角形ABC的边长AB是480毫米.一质点D从点B出发,沿BA方向,以每秒钟10毫米的速度向精英家教网点A运动.
(1)建立合适的直角坐标系,用运动时间t(秒)表示点D的坐标;
(2)过点D在三角形ABC的内部作一个矩形DEFG,其中EF在BC边上,G在AC边上.在图中找出点D,使矩形DEFG是正方形(要求所表达的方式能体现出找点D的过程);
(3)过点D、B、C作平行四边形,当t为何值时,由点C、B、D、F组成的平行四边形的面积等于三角形ADC的面积,并求此时点F的坐标.

查看答案和解析>>

精英家教网如图,已知矩形DEFG内接于Rt△ABC,D在AB上,E、F在BC上,G在AC上,∠BAC=90°,AB=6cm,AC=8cm,S矩形DEFG=
454
,则矩形的边长DG=
 

查看答案和解析>>

(2012•德化县模拟)如图,已知:△ABC是边长为2
3
的等边三角形,四边形DEFG是边长为3的正方形.现将等边△ABC和正方形DEFG按如图1的方式摆放,使点C与点E重合,点B、C(E)、F在同一条直线上,△ABC从图1的位置出发,以每秒
1
2
个单位长度的速度沿EF方向向右匀速运动,当点C与点F重合时暂停运动,设△ABC的运动时间为t秒(t≥0).
(1)在运动过程中,设AC交DE于点P,PE=
3
2
3
2
t;
(2)在整个运动过程中,设等边△ABC和正方形DEFG重叠部分的面积为S,
①当t为何值时,S等于△ABC面积的三分之一;
②当点A在DG上运动时,请求出S与t之间的函数关系式,并指出t的取值范围;
(3)如图2,若四边形DEFG是边长为2
3
的正方形,△ABC的移动速度为每秒
3
2
个单位长度,其余条件保持不变.△ABC开始移动的同时,Q点从F点开始,沿折线F-G-D以每秒
3
个单位长度开始移动,△ABC停止运动时,Q点也停止运动.设在运动过程中,DE交折线B-A-C于P点,则是否存在t的值,使得PC与EQ互相垂直?若存在,请求出t的值;若不存在,请说明理由.

查看答案和解析>>

如图,已知矩形OABC,点P在边OA上(不与端点重合),点Q在边CO上(不与端点重合).
(1)如图(1),若∠BPQ=90°,且△OPQ与△PAB和△QPB相似,请写出表示这三个三角形相似的式子,并探究此时线段OQ、QB、BA之间的数量关系.
(2)若∠PQB=90°,且△OPQ与△PAB、△QPB都相似,如图(2),请重新写出表示这三个三角形相似的式子,并证明AB:OA=2
3
:3.
(3)在(1)中,若OA=8
2
,OC=8,OP=
2
CQ.以矩形OABC的两边OA、OC所在的直线分别为x轴和y轴,建立平面直角坐标系,如图(3),若某抛物线顶点为P,点B在抛物线上.
①求此抛物线的解析式.
②过线段BP上一动点M(点M与点P、B不重合),作y轴的平行线交抛物线于点N,若记点M的横坐标为m,试求线段MN的长L与m之间的函数关系式,画出该函数的示意图,并指出m取何值时,L有最大值,最大值是多少?

查看答案和解析>>

(2012•上海模拟)如图,已知在△ABC中,点D在边BC上,且BD:DC=1:2.如果
.
AB
=
.
a
.
AC
=
.
b
,那么
.
AD
=
2
3
.
a
+
1
3
.
b
2
3
.
a
+
1
3
.
b
(结果用含
.
a
.
b
的式子表示).

查看答案和解析>>


同步练习册答案