题目列表(包括答案和解析)
解答题.解答应写出文字说明、证明过程或演算步骤
设一个三角形的三边长分别为3,1-2m,8,求m的取值范围
已知:抛物线y=-x2+2x+m-2交y轴于点A(0,2m-7).与直线
y=
x交于点B、C(B在右、C在左).
1.求抛物线的解析式
2.设抛物线的顶点为E,在抛物线的对称轴上是否存在一点F,使得
,若存在,求出点F的坐标,若不存在,说明理由
3.射线OC上有两个动点P、Q同时从原点出发,分别以每秒
个单位长度、每秒2
个单位长度的速度沿射线OC运动,以PQ为斜边在直线BC的上方作直角三角形PMQ(直角边分别平行于坐标轴),设运动时间为t秒,若△PMQ与抛物线y=-x2+2x+m-2有公共点,求t的取值范围.
![]()
已知:抛物线y=-x2+2x+m-2交y轴于点A(0,2m-7).与直线
y=
x交于点B、C(B在右、C在左).
1.求抛物线的解析式
2.设抛物线的顶点为E,在抛物线的对称轴上是否存在一点F,使得
,若存在,求出点F的坐标,若不存在,说明理由
3.射线OC上有两个动点P、Q同时从原点出发,分别以每秒
个单位长度、每秒2
个单位长度的速度沿射线OC运动,以PQ为斜边在直线BC的上方作直角三角形PMQ(直角边分别平行于坐标轴),设运动时间为t秒,若△PMQ与抛物线y=-x2+2x+m-2有公共点,求t的取值范围.
![]()
已知:抛物线y=-x2+2x+m-2交y轴于点A(0,2m-7).与直线
y=
x交于点B、C(B在右、C在左).
【小题1】求抛物线的解析式
【小题2】设抛物线的顶点为E,在抛物线的对称轴上是否存在一点F,使得
,若存在,求出点F的坐标,若不存在,说明理由
【小题3】射线OC上有两个动点P、Q同时从原点出发,分别以每秒
个单位长度、每秒2
个单位长度的速度沿射线OC运动,以PQ为斜边在直线BC的上方作直角三角形PMQ(直角边分别平行于坐标轴),设运动时间为t秒,若△PMQ与抛物线y=-x2+2x+m-2有公共点,求t的取值范围.![]()
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com