1.在“分数 的学习中.引入“可能性 问题.学习用数量来描述一个事件发生的可能性大小.初步体会朴素的概率思想. 查看更多

 

题目列表(包括答案和解析)

在数学的学习中,我们要学会总结,不断地归纳,思考和运用,这样才能提高我们解决问题的能力,下面这个问题大家一定似曾相识:
(1)比较大小:
    ①2+1
2×1
;   ②3+
1
3
2
1
3
;   ③8+8
=
=
2
8×8

(2)通过上面三个计算,我们可以初步对任意的非负实数a,b做出猜想  a+b
2
ab

(3)蓦然回首,我们发现在《梯形的中位线》一节遇到的一个问题,此时运用这个结论巧妙解决;如图有一个等腰梯形工件(厚度不计),其面积为1800cm2,现在要用细包装带如图那样包扎(四点为四边中点),则至少需要包装带的长度为
120
2
120
2
cm.

查看答案和解析>>

(2013•青岛)在前面的学习中,我们通过对同一面积的不同表达和比较,根据图1和图2发现并验证了平方差公式和完全平方公式.
这种利用面积关系解决问题的方法,使抽象的数量关系因几何直观而形象化.

【研究速算】
提出问题:47×43,56×54,79×71,…是一些十位数字相同,且个位数字之和是10的两个两位数相乘的算式,是否可以找到一种速算方法?
几何建模:
用矩形的面积表示两个正数的乘积,以47×43为例:
(1)画长为47,宽为43的矩形,如图3,将这个47×43的矩形从右边切下长40,宽3的一条,拼接到原矩形上面.
(2)分析:原矩形面积可以有两种不同的表达方式:47×43的矩形面积或(40+7+3)×40的矩形与右上角3×7的矩形面积之和,即47×43=(40+10)×40+3×7=5×4×100+3×7=2021.
用文字表述47×43的速算方法是:十位数字4加1的和与4相乘,再乘以100,加上个位数字3与7的积,构成运算结果.
归纳提炼:
两个十位数字相同,并且个位数字之和是10的两位数相乘的速算方法是(用文字表述)
十位数字加1的和与十位数字相乘,再乘以100,加上两个个位数字的积,构成运算结果
十位数字加1的和与十位数字相乘,再乘以100,加上两个个位数字的积,构成运算结果

【研究方程】
提出问题:怎样图解一元二次方程x2+2x-35=0(x>0)?
几何建模:
(1)变形:x(x+2)=35.
(2)画四个长为x+2,宽为x的矩形,构造图4
(3)分析:图中的大正方形面积可以有两种不同的表达方式,(x+x+2)2或四个长x+2,宽x的矩形面积之和,加上中间边长为2的小正方形面积.
即(x+x+2)2=4x(x+2)+22
∵x(x+2)=35
∴(x+x+2)2=4×35+22
∴(2x+2)2=144
∵x>0
∴x=5
归纳提炼:求关于x的一元二次方程x(x+b)=c(x>0,b>0,c>0)的解.
要求参照上述研究方法,画出示意图,并写出几何建模步骤(用钢笔或圆珠笔画图,并注明相关线段的长)
【研究不等关系】
提出问题:怎样运用矩形面积表示(y+3)(y+2)与2y+5的大小关系(其中y>0)?
几何建模:
(1)画长y+3,宽y+2的矩形,按图5方式分割
(2)变形:2y+5=(y+3)+(y+2)
(3)分析:图5中大矩形的面积可以表示为(y+3)(y+2);阴影部分面积可以表示为(y+3)×1,画点部分部分的面积可表示为y+2,由图形的部分与整体的关系可知(y+3)(y+2)>(y+3)+(y+2),即(y+3)(y+2)>2y+5
归纳提炼:
当a>2,b>2时,表示ab与a+b的大小关系.
根据题意,设a=2+m,b=2+n(m>0,n>0),要求参照上述研究方法,画出示意图,并写出几何建模步骤(用钢笔或圆珠笔画图并注明相关线段的长)

查看答案和解析>>

开放创新:一只乌鸦想喝到瓶子里的水,可是瓶子很高,口又小,里面的水也不多,怎么办?它把旁边的小石子一个又一个地衔起来,放到瓶子里,水面慢慢升高了,乌鸦喝到了水.
这个故事同学们一定都知道,但对我们解数学题的有益启示却未必知道.如果题目所提供的信息少,难以入手,或按常规方法来解比较繁难,这时我们不妨向乌鸦学习,借些“石子”来帮我们解题.请看下面的例题:
化简:
2+
3
-
2-
3

解析:此题对我们来说难度很大,好象无能为力,其实化简此式,可借方程为“石子”,设
2+
3
-
2-
3
=x.①
因为
2+
3
-
2-
3
>0,将①两边平方,得2+
3
-2•
2+
3
2-
3
+2-
3
=x2
,即x2=2.所以原式=
2

在平时的学习中你是否用到过此方法来解决数学中的问题呢?请举一例.

查看答案和解析>>

18、在过去的学习中,我们已经接触了很多代数恒等式,其实这些代数恒等式可以用一些硬纸片拼成的图形的面积来解释这些代数式.例如,图可以用来解释4a2=(2a)2请问可以用图来解释的恒等式是:
(a+b)2=a2+2ab+b2

查看答案和解析>>

解决下面问题:
如图,在△ABC中,∠A是锐角,点D,E分别在AB,AC上,且∠DCB=∠EBC=
12
∠A,BE与CD相交于点O,探究BD与CE之间的数量关系,并证明你的结论.

小新同学是这样思考的:
在平时的学习中,有这样的经验:假如△ABC是等腰三角形,那么在给定一组对应条件,如图a,BE,CD分别是两底角的平分线(或者如图b,BE,CD分别是两条腰的高线,或者如图c,BE,CD分别是两条腰的中线)时,依据图形的轴对称性,利用全等三角形和等腰三角形的有关知识就可证得更多相等的线段或相等的角.这个问题也许可以通过添加辅助线构造轴对称图形来解决.请参考小新同学的思路,解决上面这个问题.

查看答案和解析>>


同步练习册答案