3.用举例分析的方法指出字母“代 数的意义.经历将实际应用问题抽象为代数方程问题的过程.初步掌握用代数方法解应用题的基本步骤,认识方程模型.会用一次方程(组)解简单的应用题 查看更多

 

题目列表(包括答案和解析)

探索题:
(1)设n表示任意一个整数,则用含有n的代数式表示任意一个偶数为
2n
2n
,用含有n的代数式表示任意一个奇数为
2n+1或2n-1
2n+1或2n-1

(2)用举例验证的方法探索:任意两个整数的和与这两个数的差是否同时为奇数或同时为偶数?你的结论是
(填“是”或“否”);
(3)设a、b是任意的两个整数,试用“用字母表示数”的方法并分情况来说明a+b和a-b是否“同奇”或“同偶”?并进一步得出一般性的结论.
例:①设a=2m,b=2n.
则a+b=2m+2n=2(m+n);a-b=2m-2n=2(m-n);
此时a+b和a-b同时为偶数.
请你仿照以上的方法并考虑其余所有可能的情况加以计算和说明;
(4)以(3)的结论为基础进一步探索:-a+b、-a-b、a+b、a-b是否“同奇”“同偶”?
(5)应用第(2)、(3)、(4)的结论完成:在2014个自然数1,2,3,…,2013,2014的每一个数的前面任意添加“+”或“-”,则其代数和一定是
奇数
奇数
(填“奇数”或“偶数”)

查看答案和解析>>

从分别标有数字1~5的五张卡片中,随意抽出两张,先估计下列事件发生的机会的大小,将他们按从小到大的顺序排成一列,再用逻辑分析的方法求出各个事件发生的概率,看看你的估计是否正确.

(1)抽出的两张卡片上的数字之和恰为奇数;

(2)抽出的两张卡片上的数字之和恰为偶数;

(3)抽出的两张卡片上的数字之和恰为4的倍数;

(4)抽出的两张卡片上的数字之和恰为小于12的数;

(5)抽出的两张卡片上的数字之和恰为大于12的数.

查看答案和解析>>

在一个口袋中有n个小球,其中2个是白球,其余为红球,这些球除颜色外,其余都相同,在看不到球的条件下,从袋中随机地取出一个球,它是红球的概率是
35

(1)求n的值;
(2)甲、乙、丙三人玩一个游戏:把这n个球分别标号为1,2,3,…n,三人按先后顺序各摸出一个球(不放回),哪个摸出一号球,哪个获胜.(若不分胜负,再重新摸)请你用画树形图的方法分析:他们各自获胜的机会与他们摸球的顺序是否有关?若有关,请指出第几个摸球更有利;若无关,请说明理由.

查看答案和解析>>

(本题满分10分)
在一个口袋中有n个小球,其中2个是白球,其余为红球,这些球除颜色外,其余都相同,在看不到球的条件下,从袋中随机地取出一个球,它是红球的概率是.
(1)求n的值;
(2)甲、乙、丙三人玩一个游戏:把这n个球分别标号为1,2,3,…n,三人按先后顺序各摸出一个球(不放回),哪个摸出一号球,哪个获胜.(若不分胜负,再重新摸)请你用画树形图的方法分析:他们各自获胜的机会与他们摸球的顺序是否有关?若有关,请指出第几个摸球更有利;若无关,请说明理由

查看答案和解析>>

(本题满分10分)
在一个口袋中有n个小球,其中2个是白球,其余为红球,这些球除颜色外,其余都相同,在看不到球的条件下,从袋中随机地取出一个球,它是红球的概率是
(1)求n的值;
(2)甲、乙、丙三人玩一个游戏:把这n个球分别标号为1,2,3,…n,三人按先后顺序各摸出一个球(不放回),哪个摸出一号球,哪个获胜.(若不分胜负,再重新摸)请你用画树形图的方法分析:他们各自获胜的机会与他们摸球的顺序是否有关?若有关,请指出第几个摸球更有利;若无关,请说明理由

查看答案和解析>>


同步练习册答案