题目列表(包括答案和解析)
如图,射线BN、AM都垂直于线段AB,E为AM上一动点,
⊥
于F,交BN于C,
⊥
于
,连接BD.
![]()
⑴求证:
;
⑵当
为
的中点时,求证:
;
⑶设
,请探究出使
为
等腰三角形的实数
的值.
【解析】(1)中利用
⊥![]()
得到直角三角形AEF相似于三角形ABE,然后得到结论。
(2)中,
由⑴有
,因为
为
的中点,所以![]()
则可以得到
![]()
从而的得到角相等
(3)中,设
,当使
为
等腰三角形时,需要考查谁是腰,分类讨论得到
①
为腰,且
为顶角顶点;
②
为腰,且
为顶角顶点;
③
为底.
①
为腰,且
为顶角顶点;
解得答案为![]()
如图,D是△ABC中AB边的中点,△BCE和△ACF都是等边三角形, M、N分别是CE、CF的中点.
![]()
1.求证:△DMN是等边三角形;
2.连接EF,Q是EF中点,CP⊥EF于点P. 求证:DP=DQ.
同学们,如果你觉得解决本题有困难,可以阅读下面两位同学的解题思路作为参考:
小聪同学发现此题条件中有较多的中点,因此考虑构造三角形的中位线,添加出了一些辅助线;小慧同学想到要证明线段相等,可通过证明三角形全等,如何构造出相应的三角形呢?她考虑将△NCM绕顶点旋转到要证的对应线段的位置,由此猜想到了所需构造的三角形的位置.
如图,D是△ABC中AB边的中点,△BCE和△ACF都是等边三角形, M、N分别是CE、CF的中点.
![]()
1.求证:△DMN是等边三角形;
2.连接EF,Q是EF中点,CP⊥EF于点P. 求证:DP=DQ.
同学们,如果你觉得解决本题有困难,可以阅读下面两位同学的解题思路作为参考:
小聪同学发现此题条件中有较多的中点,因此考虑构造三角形的中位线,添加出了一些辅助线;小慧同学想到要证明线段相等,可通过证明三角形全等,如何构造出相应的三角形呢?她考虑将△NCM绕顶点旋转到要证的对应线段的位置,由此猜想到了所需构造的三角形的位置.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com