5.理解梯形的有关概念.掌握等腰梯形的性质与判定,掌握三角形中位线定理和梯形中位线定理,建立梯形与三角形之间的联系.领悟对立统一的思想观点. 查看更多

 

题目列表(包括答案和解析)

圆的有关概念:
(1)圆两种定义方式:
(a)在一个平面内线段OA绕它固定的一个端点O旋转一周,另一个端点A随之旋转所形成的图形叫做圆,固定的端点O叫做
圆心
圆心
.线段OA叫做
半径
半径

(b)圆是所有点到定点O的距离
等于
等于
定长r的点的集合.
(2)弦:连接圆上任意两点的
线段
线段
叫做弦.(弦不一定是直径,直径一定是弦,直径是圆中最长的弦);
(3)弧:圆上任意两点间的部分叫
(弧的度数等于这条弧所对的圆心角的度数,等于这条弧所对圆周角的两倍)
(4)等弧:在同圆与等圆中,能够
完全重合
完全重合
的弧叫等弧.
(5)等圆:能够
完全重合
完全重合
的两个圆叫等圆,半径
相等
相等
的两个圆也叫等圆..

查看答案和解析>>

等腰梯形的有关性质:等腰梯形是一个________对称图形;等腰梯形同一底边上的两个内角________;等腰梯形的两条对角线________.

查看答案和解析>>

23、△ABC在平面直角坐标系中的位置如图所示.
(1)作出△ABC关于y轴对称的△A1B1C1,并写出△A1B1C1各顶点的坐标;
(2)将△ABC向右平移6个单位,作出平移后的△A2B2C2,并写出△A2B2C2各顶点的坐标;
(3)观察△A1B1C1和△A2B2C2,它们是否关于某直线对称若是,请在图上画出这条对称轴.
注:考察学生通过对几何图形做不同变换,作出几何对象的大小.位置,特征的变化情况,理解图形的对称,掌握数形结合思想.

查看答案和解析>>

3、阅读理解:市盈率是某种股票每股市价与每股盈利的比率(即:某支股票的市盈率=该股票当前每股市价÷该股票上一年每股盈利).市盈率是估计股票价值的最基本、最重要的指标之一.一般认为该比率保持在30以下是正常的,风险小,值得购买;过大则说明股价高,风险大,购买时应谨慎.
应用:某日一股民通过互联网了解到如下三方面的信息:
①甲股票当日每股市价与上年每股盈利分别为5元、0.2元
乙股票当日每股市价与上年每股股盈利分别为8元、0.01元
②该股民所购买的15支股票的市盈率情况如下表:

③丙股票最近10天的市盈率依次为:
20    20    30    28    32    35    38    42    40    44
根据以上信息,解答下列问题:
(1)甲、乙两支股票的市盈率分别是多少?
(2)该股民所购买的15支股票中风险较小的有几支?
(3)求该股民所购15支股票的市盈率的平均数、中位数与众数;
(4)请根据丙股票最近10天的市盈率画出折线统计图,并依据市盈率的有关知识和折线统计图,就丙股票给该股民一个合理的建议.

查看答案和解析>>

【阅读理解】:若一条直线l把一个图形分成面积相等的两个图形,则称这样的直线l叫做这个图形的等积直线.如图①,直线l经过三角形ABC的顶点A和边BC的中点N,易知直线l将△ABC分成两个面积相等的图形,则称直线l为△ABC的等积直线.

根据上述内容解决以下问题:
(1)如图②,在矩形ABCD中,直线l经过AD、BC边的中点M、N,请你判断直线l是否为该矩形的等积直线.
 (填“是”或“否”)并在图②中再画出一条该矩形的等积直线;(不必写作法,保留作图痕迹)
(2)如图③,在梯形ABCD中,直线l经过AD、BC边的中点M、N,请你判断直线l是否为该梯形的等积直线.
;(填“是”或“否”)
(3)在图③中,过MN的中点O任做一条直线PQ分别交AD,BC于点P,Q(如图④),猜想PQ是否为该梯形的等积直线,若“是”请证明,若“不是”请说明理由;
【探索应用】:
李大爷家有一块五边形的土地如图⑤,已知∠A、∠B、∠C都是直角,AB∥CD,BC∥AE,现决定画一条线把五边形土地分为两
块,其中一块地用来改种核桃树,要求两块地面积相同,请你帮李大爷画出这条线,并判断这样的直线有多少条(保留作图痕迹,不必说明理由).

查看答案和解析>>


同步练习册答案