如图.P为正方形ABCD的对称中心.正方形ABCD的边长为,.直线OP交AB于N.DC于M.点H从原点O出发沿x轴的正半轴方向以1个单位每秒速度运动.同时.点R从O出发沿OM方向以个单位每秒速度运动.运动时间为t.求: (1)分别写出A.C.D.P的坐标, (2)当t为何值时.△ANO与△DMR相似? (3)△HCR面积S与t的函数关系式,并求以A.B.C.R为顶点的 四边形是梯形时t的值及S的最大值. 查看更多

 

题目列表(包括答案和解析)

24.(本小题满分14分)

如图12,边长为1的正方形ABCD被两条与边平行的线段EF、GH分割为四个小矩形,EF与GH交于点P。

(1)若AG=AE,证明:AF=AH;

(2)若∠FAH=45°,证明:AG+AE=FH;

(3)若RtΔGBF的周长为1,求矩形EPHD的面积。

查看答案和解析>>

(本题满分12分)如图,在边长为2的正方形ABCD中,PAB的中点,Q为边CD上一动点,设DQt(0≤t≤2),线段PQ的垂直平分线分别交边ADBC于点MN,过QQEAB于点E,过MMFBC于点F

(1)当t≠1时,求证:△PEQ≌△NFM

(2)顺次连接PMQN,设四边形PMQN的面积为S,求出S与自变量t之间的函数关系式,并求S的最小值.

 

 

 

 

 

 

 

 

 

 

 

查看答案和解析>>

(本题满分12分)如图,在边长为2的正方形ABCD中,PAB的中点,Q为边CD上一动点,设DQt(0≤t≤2),线段PQ的垂直平分线分别交边ADBC于点MN,过QQEAB于点E,过MMFBC于点F

(1)当t≠1时,求证:△PEQ≌△NFM

(2)顺次连接PMQN,设四边形PMQN的面积为S,求出S与自变量t之间的函数关系式,并求S的最小值.

 

 

 

 

 

 

 

 

 

 

 

查看答案和解析>>

(本题满分12分)
【小题1】(1)如图1,在正方形ABCD中,M是BC边(不含端点B、C)上任意一点,P是BC延长线上一点,N是∠DCP的平分线上一点.若∠AMN=90°,求证:AM=MN.
下面给出一种证明的思路,你可以按这一思路证明,也可以选择另外的方法证明.
证明:在边AB上截取AE=MC,连ME.正方形ABCD中,∠B=∠BCD=90°,
AB=BC.∴∠NMC=180°—∠AMN­—∠AMB=180°—∠B—∠AMB=∠MAB
=∠MAE.
(下面请你完成余下的证明过程)

【小题2】(2)若将(1)中的“正方形ABCD”改为“正三角形ABC”(如图2),N是∠ACP的平分线上一点,则当∠AMN=60°时,结论AM=MN是否还成立?请说明理由.

【小题3】(3)若将(1)中的“正方形ABCD”改为“正边形ABCD…X”,请你作出猜想:当∠AMN=        °时,结论AM=MN仍然成立.(直接写出答案,不需要证明)

查看答案和解析>>

(本题满分12分)如图,已知直线交坐标轴于A、B点,以线段AB为边向上作正方形ABCD,过点A、D、C的抛物线与直线的另一个交点为E.

【小题1】(1)填空:点A的坐标为           ,点B的坐标为           ,AB的长为           
【小题2】(2)求点C、D的坐标
【小题3】(3)求抛物线的解析式
【小题4】(4)若抛物线与正方形沿射线AB下滑,直至点C落在轴上时停止,则抛物线上C、E两点间的抛物线所扫过的面积为           

查看答案和解析>>


同步练习册答案