24. 如图.在△ABC中.点D.E分别在边AC.AB上.BD=CE.∠DBC=∠ECB. 求证:AB=AC. 查看更多

 

题目列表(包括答案和解析)

在△ABC中,AB、BC、AC三边的长分别为,求这个三角形的面积.
小华同学在解答这道题时,先建立一个正方形网格(每个小正方形的边长为1),再在网格中画出格点△ABC(即△ABC三个顶点都在小正方形的顶点处),如图①所示.这样就不需要求△ABC的高,而借用网格就能计算出它的面积.(本题8分)
⑴ 请你将△ABC的面积直接填写在横线上.           
思维拓展:
⑵ 我们把上述求△ABC面积的方法叫做构图法.若△ABC三边的长分别为>0),请利用图②的正方形网格(每个小正方形的边长为)画出相应的△ABC,并求出它的面积.
探索创新:
⑶ 若△ABC三边的长分别为>0,>0,且),试运用构图法求出这个三角形的面积.

查看答案和解析>>

在△ABC中,AB、BC、AC三边的长分别为,求这个三角形的面积.

小华同学在解答这道题时,先建立一个正方形网格(每个小正方形的边长为1),再在网格中画出格点△ABC(即△ABC三个顶点都在小正方形的顶点处),如图①所示.这样就不需要求△ABC的高,而借用网格就能计算出它的面积.(本题8分)

⑴ 请你将△ABC的面积直接填写在横线上.           

思维拓展:

⑵ 我们把上述求△ABC面积的方法叫做构图法.若△ABC三边的长分别为>0),请利用图②的正方形网格(每个小正方形的边长为)画出相应的△ABC,并求出它的面积.

探索创新:

⑶ 若△ABC三边的长分别为>0,>0,且),试运用构图法求出这个三角形的面积.

                 

 

 

 

查看答案和解析>>

如图,在正三角形ABC中,D、E、F分别为三边BC、CA、AB的中点,看一看,数一数,在整个图形中,有多少个三角形?多少个平行四边形?多少个菱形?多少个等腰梯形?(本题只要求观察,说出你数得的个数)

查看答案和解析>>

如图①,BO、CO分别为∠ABC和∠ACB的平分线,我们易得∠BOC=90°+数学公式∠A(不必证明,本题可直接运用);在图②中,当BO′、CO′分别为∠ABC和∠ACB的外角平分线时,求∠BO′C与∠A的数量关系.我们可以利用“转化”的思想,将未知的∠BO′C转化为已知的∠BOC:如图②,作BO、CO平分∠ABC和∠ACB.

(1)在图②中存在如图③的基本图形:点A、B、D在同一直线上,且BO、BO′分别平分∠ABC和∠DBC,试证明:BO⊥BO′;
(2)试直接利用上述基本图形的结论,猜想并证明图②中∠BO′C与∠A的数量关系;
(3)如图④,BP、CP分别为内角∠ABC和外角∠ACF的平分线,试运用上述转化的思想猜想并证明∠BPC与∠A的数量关系.

查看答案和解析>>

(本题10分)如图,已知△ABC中,∠A=90°,AC=10,AB=5,点A、C分别在x轴和y轴上,且C(0,8),抛物线y=x2+bx+c过B、C两点

1.⑴求抛物线解析式.

2.⑵如果将△ABC沿CA翻折,设点B的落点为点M,现平移抛物线,使它的顶点为M,求出平移后的抛物线解析式,并写出平移的方法.

 

查看答案和解析>>


同步练习册答案