22.如图①.四边形ABCD是正方形, 点G是BC上任意一点.DE⊥AG于点E.BF⊥AG于点F. (1) 求证:DE-BF = EF. (2) 当点G为BC边中点时, 试探究线段EF与GF之间的数量关系. 并说明理由. (3) 若点G为CB延长线上一点.其余条件不变. 请你在图②中画出图形.写出此时DE.BF.EF之间的数量关系. 查看更多

 

题目列表(包括答案和解析)

(本题10分)(1)如图1,已知∠AOB,OA=OB,点E在OB边上,四边形AEBF 是平行四边形,请你只用无刻度的直尺在图中画出∠AOB的平分线.(保留作图痕迹,不要求写作法)

(2)如图2,在10×10的正方形网格中,点A(0,0)、B(5,0)、C(3,6)、D(-1,3),

①依次连结A、B、C、D四点得到四边形ABCD,四边形ABCD的形状是     ▲     .

②在x轴上找一点P,使得△PCD的周长最短(直接画出图形,不要求写作法);

此时,点P的坐标为     ▲     ,最短周长为     ▲     .

 

查看答案和解析>>

(本题10分)(1)如图1,已知∠AOB,OA=OB,点E在OB边上,四边形AEBF 是平行四边形,请你只用无刻度的直尺在图中画出∠AOB的平分线.(保留作图痕迹,不要求写作法)
(2)如图2,在10×10的正方形网格中,点A(0,0)、B(5,0)、C(3,6)、D(-1,3),
①依次连结A、B、C、D四点得到四边形ABCD,四边形ABCD的形状是    ▲     .
②在x轴上找一点P,使得△PCD的周长最短(直接画出图形,不要求写作法);
此时,点P的坐标为    ▲     ,最短周长为    ▲     .

查看答案和解析>>

(本题10分) 以四边形ABCD的边ABBCCDDA为斜边分别向外侧作等腰直角三角形,直角顶点分别为EFGH,顺次连结这四个点得四边形EFGH.如图1,当四边形ABCD为正方形时,我们发现四边形EFGH是正方形;
【小题1】(1)如图2,当四边形ABCD为矩形时,则四边形EFGH的形状是    ;(1分)
【小题2】(2)如图3,当四边形ABCD为一般平行四边形时,设∠ADC=(0°<<90°),
【小题3】① 试用含的代数式表示∠HAE=              ;(1分)
【小题4】② 求证:HE=HG;(4分)③ 四边形EFGH是什么四边形?并说明理由.(4分)

查看答案和解析>>

(本题10分) 以四边形ABCD的边ABBCCDDA为斜边分别向外侧作等腰直角三角形,直角顶点分别为EFGH,顺次连结这四个点得四边形EFGH.如图1,当四边形ABCD为正方形时,我们发现四边形EFGH是正方形;
【小题1】(1)如图2,当四边形ABCD为矩形时,则四边形EFGH的形状是    ;(1分)
【小题2】(2)如图3,当四边形ABCD为一般平行四边形时,设∠ADC=(0°<<90°),
【小题3】① 试用含的代数式表示∠HAE=              ;(1分)
【小题4】② 求证:HE=HG;(4分)③ 四边形EFGH是什么四边形?并说明理由.(4分)

查看答案和解析>>

(本题10分)(1)如图1,已知∠AOB,OA=OB,点E在OB边上,四边形AEBF 是平行四边形,请你只用无刻度的直尺在图中画出∠AOB的平分线.(保留作图痕迹,不要求写作法)
(2)如图2,在10×10的正方形网格中,点A(0,0)、B(5,0)、C(3,6)、D(-1,3),
①依次连结A、B、C、D四点得到四边形ABCD,四边形ABCD的形状是    ▲     .
②在x轴上找一点P,使得△PCD的周长最短(直接画出图形,不要求写作法);
此时,点P的坐标为    ▲     ,最短周长为    ▲     .

查看答案和解析>>


同步练习册答案