题目列表(包括答案和解析)
如图,已知:如图(1),AB是⊙O的直径,P是AB上的一点(与A、B不重合).QP⊥AB,垂足为P,直线QA交⊙O于C点,过C点作⊙O的切线交直线QP于点D,则△CDQ是等腰三角形.对上述命题证明如下:
证明:连结OC.
∵OA=OC,∴∠A=∠1.
∵CD切⊙O于C点,
∴∠OCD=90°,
∴∠1+∠2=90°,
∴∠A+∠2=90°.
在Rt△QPA中,∠QPA=90°,
∴∠A+∠Q=90°,
∴∠2=∠Q.∴DQ=DC.
即△CDQ是等腰三角形.
问题:对上述命题,当点P在BA的延长线上时,其他条件不变,如图(2)所示,结论“△CDQ是等腰三角形”还成立吗?若成立,请给予证明;若不成立,请说明理由.
如图,AB是⊙
的直径,P是AB上一点(与点A,B不重合),QP⊥AB,垂足为P点,直线QA交⊙
于C点,过点C作⊙
的切线交直线QP于点D.则△CDQ是等腰三角形.对上述命题证明如下:
![]()
证明:连接OC.
∵OA=OC,∴∠A=∠1.
∵CD切⊙
于C点,
∴∠OCD=90°,∴∠1+∠2=90°,∴∠A+∠2=90°.
在Rt△QPA中,∠QPA=90°,
∴∠A+∠Q=90°,∴∠2=∠Q,∴DQ=DC.
即△CDQ是等腰三角形.
问题:对上述命题,当点P在BA的延长线上时,其他条件不变.
如图所示,结论“△CDQ是等腰三角形”还成立吗?若成立,请给予证明;若不成立,请说明理由.
![]()
已知:如图所示,AB是⊙O的直径,P是AB上的一点(与A、B不重合),QP⊥AB,垂足为P,直线QA交⊙O于C点,过C点作⊙O的切线交直线QP于点D,则△CDQ是等腰三角形.对上述命题证明如下:
证明:连接OC.
∵OA=OC,
∴∠A=∠1.
∵CD切⊙O于C点,
∴∠OCD=90°.
∴∠1+∠2=90°.
∴∠A+∠2=90°.
在Rt△QPA中,∠QPA=90°,
∴∠A+∠Q=90°.
∴∠2=∠Q.∴DQ=DC.
即△CDQ是等腰三角形
问题:对上述命题,当点P在BA的延长线上时,其他条件不变,结论“△CDQ是等腰三角形”还成立吗?若成立,请给予证明;若不成立,请说明理由.
阅读材料并解答问题:
与正三角形各边都相切的圆叫做正三角形的内切圆,与正四边形各边都相切的圆叫做正四边形的内切圆,…,与正n边形各边都相切的圆叫做正n边形的内切圆,设正n(n≥3)边形的面积为S正n边形,其内切圆的半径为r,试探索正n边形的面积.(结果可用三角函数表示)
如图①,当n=3时,设AB切圆O于点C,连结OC,OA,OB,
∴OC⊥AB,OA=OB,∴∠AOC=
AOB,AB=2BC.
在Rt△AOC中,
,OC=r,
∴AC=r·tan60°,AB=2r·tan60°,
∴S△OAB=
·r·2rtan60°=r2tan60°,
∴S正三角形=3S△OAB=3r2·tan60°.
(1)如图②,当n=4时,仿照(1)中的方法和过程可求得:S正四边形=________;
(2)如图③,当n=5时,仿照(1)中的方法和过程求S正五边形;
![]()
(3)如图④,根据以上探索过程,请直接写出S正n边形________.
(2005 福州)已知:如图所示,AB是⊙O的直径,P是AB上的一点(与A、B不重合),QP⊥AB,垂足为P,直线QA交⊙O于C点,过C点作⊙O的切线交直线QP于点D,则△CDQ是等腰三角形,对上述命题证明如下:
![]()
证明 连接OC.∵OA=OC=OC,∴∠A==∠1.
∵CD切⊙O于C点,∴∠OCD=90=90°,
∴∠1+∠2=90°,∴∠A+∠2=90°,
在Rt△QPA中,∠QPA=90=90°,
∴∠A+∠Q=90=90°,∴∠2=∠Q.∴DQ=DC=DC.
即△CDQ是等腰三角形.
问题 对上述命题,当点P在BA的延长线上时,其他条件不变,如图所示,结论“△CDQ是等腰三角形”还成立吗?若成立,请给予证明;若不成立,请说明理由.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com