19.证明:连结OC.∵OA=OC ∴∠OAC=∠OCA----- ∵DC是切线 ∴∠DCF=900-∠OCA----- ∵DE⊥AB ∴∠DFC=900-∠OAC----- ∵∠OAC=∠OCA.----- ∴∠DFC=∠DCF-----即△DFC是等腰三角形. 查看更多

 

题目列表(包括答案和解析)

利用切线性质证明等腰三角形

  如图,已知:如图(1),AB是⊙O的直径,P是AB上的一点(与A、B不重合).QP⊥AB,垂足为P,直线QA交⊙O于C点,过C点作⊙O的切线交直线QP于点D,则△CDQ是等腰三角形.对上述命题证明如下:

  证明:连结OC.

  ∵OA=OC,∴∠A=∠1.

  ∵CD切⊙O于C点,

  ∴∠OCD=90°,

  ∴∠1+∠2=90°,

  ∴∠A+∠2=90°.

  在Rt△QPA中,∠QPA=90°,

  ∴∠A+∠Q=90°,

  ∴∠2=∠Q.∴DQ=DC.

  即△CDQ是等腰三角形.

问题:对上述命题,当点P在BA的延长线上时,其他条件不变,如图(2)所示,结论“△CDQ是等腰三角形”还成立吗?若成立,请给予证明;若不成立,请说明理由.

查看答案和解析>>

如图,AB是⊙的直径,PAB上一点(与点AB不重合)QPAB,垂足为P点,直线QA交⊙C点,过点C作⊙的切线交直线QP于点D.则△CDQ是等腰三角形.对上述命题证明如下:

证明:连接OC

OA=OC,∴∠A=1

CD切⊙C点,

∴∠OCD=90°,∴∠1+2=90°,∴∠A+2=90°

在Rt△QPA中,∠QPA=90°

∴∠A+Q=90°,∴∠2=Q,∴DQ=DC

即△CDQ是等腰三角形.

问题:对上述命题,当点PBA的延长线上时,其他条件不变.

如图所示,结论CDQ是等腰三角形还成立吗?若成立,请给予证明;若不成立,请说明理由.

查看答案和解析>>

已知:如图所示,AB是⊙O的直径,P是AB上的一点(与A、B不重合),QP⊥AB,垂足为P,直线QA交⊙O于C点,过C点作⊙O的切线交直线QP于点D,则△CDQ是等腰三角形.对上述命题证明如下:

证明:连接OC.

∵OA=OC,

∴∠A=∠1.

∵CD切⊙O于C点,

∴∠OCD=90°.

∴∠1+∠2=90°.

∴∠A+∠2=90°.

在Rt△QPA中,∠QPA=90°,

∴∠A+∠Q=90°.

∴∠2=∠Q.∴DQ=DC.

即△CDQ是等腰三角形

问题:对上述命题,当点P在BA的延长线上时,其他条件不变,结论“△CDQ是等腰三角形”还成立吗?若成立,请给予证明;若不成立,请说明理由.

查看答案和解析>>

阅读材料并解答问题:

与正三角形各边都相切的圆叫做正三角形的内切圆,与正四边形各边都相切的圆叫做正四边形的内切圆,…,与正n边形各边都相切的圆叫做正n边形的内切圆,设正n(n≥3)边形的面积为S正n边形,其内切圆的半径为r,试探索正n边形的面积.(结果可用三角函数表示)

如图①,当n=3时,设AB切圆O于点C,连结OC,OA,OB,

∴OC⊥AB,OA=OB,∴∠AOC=AOB,AB=2BC.

在Rt△AOC中,,OC=r,

∴AC=r·tan60°,AB=2r·tan60°,

∴S△OAB·r·2rtan60°=r2tan60°,

∴S正三角形=3S△OAB=3r2·tan60°.

(1)如图②,当n=4时,仿照(1)中的方法和过程可求得:S正四边形=________;

(2)如图③,当n=5时,仿照(1)中的方法和过程S正五边形

(3)如图④,根据以上探索过程,请直接写出S正n边形________.

查看答案和解析>>

(2005 福州)已知:如图所示,AB是⊙O的直径,PAB上的一点(与AB不重合),QPAB,垂足为P,直线QA交⊙OC点,过C点作⊙O的切线交直线QP于点D,则△CDQ是等腰三角形,对上述命题证明如下:

证明 连接OC.∵OA=OC=OC,∴∠A==∠1.

CD切⊙OC点,∴∠OCD=90=90°,

∴∠1+∠2=90°,∴∠A+∠2=90°,

在Rt△QPA中,∠QPA=90=90°,

∴∠A+∠Q=90=90°,∴∠2=∠Q.∴DQ=DC=DC

即△CDQ是等腰三角形.

问题 对上述命题,当点PBA的延长线上时,其他条件不变,如图所示,结论“△CDQ是等腰三角形”还成立吗?若成立,请给予证明;若不成立,请说明理由.

 

 

查看答案和解析>>


同步练习册答案