题目列表(包括答案和解析)
(本小题满分6分)
解不等式组:
,并把解集在数轴上表示出来.
(本小题满分8分)
为减少环境污染,自2008年6月1日起,全国的商品零售场所开始实行“塑料购物袋有偿使用制度”(以下简称“限塑令”).某班同学于6月上旬的一天,在某超市门口采用问卷调查的方式,随机调查了“限塑令”实施前后,顾客在该超市用购物袋的情况,以下是根据100位顾客的100份有效答卷画出的统计图表的一部分:
![]()
“限塑令”实施后,塑料购物袋使用后的处理方式统计表
| 处理方式 | 直接丢弃 | 直接做垃圾袋 | 再次购物使用 | 其它 |
| 选该项的人数占 总人数的百分比 | 5% | 35% | 49% | 11% |
请你根据以上信息解答下列问题:
(1)补全图1,“限塑令”实施前,如果每天约有2 000人次到该超市购物.根据这100位顾客平均一次购物使用塑料购物袋的平均数,估计这个超市每天需要为顾客提供多少个塑料购物袋?
(2)补全图2,并根据统计图和统计表说明,购物时怎样选用购物袋,塑料购物袋使用后怎样处理,能对环境保护带来积极的影响.
(本小题满分14分)平面直角坐标系中,平行四边形ABOC如图放置,点A、C的坐标分别为(0,3)、(
,0),将此平行四边形绕点0顺时针旋转90°,得到平行四边形
。
(1)若抛物线过点C,A,
,求此抛物线的解析式;
(2)求平行四边形ABOC和平行四边形
重叠部分△
的周长;
(3)点M是第一象限内抛物线上的一动点,间:点M在何处时△
的面积最大?最大面积是多少?并求出此时点M的坐标。
(本小题满分12分)
在平面直角坐标系xOy中,抛物线的解析式是y =+1,点C的坐标为(–4,0),平行四边形OABC的顶点A,B在抛物线上,AB与y轴交于点M,已知点Q(x,y)在抛物线上,点P(t,0)在x轴上.
(1) 写出点M的坐标;
(2) 当四边形CMQP是以MQ,PC为腰的梯形时.
① 求t关于x的函数解析式和自变量x的取值范围;
② 当梯形CMQP的两底的长度之比为1:2时,求t的值.
(本小题满分7分)
⑴解不等式组:
⑵如图所示,在梯形ABCD中,BC∥AD,AB=DC,点M是AD的中点.
![]()
求证:BM=CM.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com