已知:在平面直角坐标系中.抛物线()交x轴于A.B两点.交y轴于点C.且对称轴为直线x=―2 . ⑴求该抛物线的解析式及顶点D的坐标, ⑵若点P(0,t)是y轴上的一个动点.请进行如下探究: 探究一:如图1.设△PAD的面积为S.令W=t·S.当0<t<4时.W是否有最大值?如果有.求出W的最大值和此时t的值,如果没有.说明理由, 探究二:如图2.是否存在以P.A.D为顶点的三角形与Rt△AOC相似?如果存在.求点P的坐标,如果不存在.请说明理由. (参考资料:抛物线对称轴是直线x=) 图1 图2 查看更多

 

题目列表(包括答案和解析)

(本小题满分12分)

在平面直角坐标系xOy中,抛物线的解析式是y =+1,点C的坐标为(–4,0),平行四边形OABC的顶点AB在抛物线上,AB与y轴交于点M,已知点Q(xy)在抛物线上,点P(t,0)在x轴上.

 (1) 写出点M的坐标;

 (2) 当四边形CMQP是以MQPC为腰的梯形时.

① 求t关于x的函数解析式和自变量x的取值范围;

② 当梯形CMQP的两底的长度之比为1:2时,求t的值.

 

查看答案和解析>>

(本小题满分12分)
在平面直角坐标系xOy中,抛物线的解析式是y =+1,点C的坐标为(–4,0),平行四边形OABC的顶点AB在抛物线上,AB与y轴交于点M,已知点Q(xy)在抛物线上,点P(t,0)在x轴上.

(1) 写出点M的坐标;
(2) 当四边形CMQP是以MQPC为腰的梯形时.
① 求t关于x的函数解析式和自变量x的取值范围;
② 当梯形CMQP的两底的长度之比为1:2时,求t的值.

查看答案和解析>>

(本小题满分12分)
在平面直角坐标系xOy中,抛物线的解析式是y =+1,点C的坐标为(–4,0),平行四边形OABC的顶点AB在抛物线上,AB与y轴交于点M,已知点Q(xy)在抛物线上,点P(t,0)在x轴上.

(1) 写出点M的坐标;
(2) 当四边形CMQP是以MQPC为腰的梯形时.
① 求t关于x的函数解析式和自变量x的取值范围;
② 当梯形CMQP的两底的长度之比为1:2时,求t的值.

查看答案和解析>>

(本小题满分12分)

在平面直角坐标系xOy中,抛物线的解析式是y =+1,点C的坐标为(–4,0),平行四边形OABC的顶点AB在抛物线上,AB与y轴交于点M,已知点Q(xy)在抛物线上,点P(t,0)在x轴上.

 (1) 写出点M的坐标;

 (2) 当四边形CMQP是以MQPC为腰的梯形时.

① 求t关于x的函数解析式和自变量x的取值范围;

② 当梯形CMQP的两底的长度之比为1:2时,求t的值.

 

查看答案和解析>>

(本小题满分12分)

如图,在平面直角坐标系中,顶点为()的抛物线交轴于点,交轴于两点(点在点的左侧), 已知点坐标为()。

(1)求此抛物线的解析式;

(2)过点作线段的垂线交抛物线于点, 如果以点为圆心的圆与直线相切,请判断抛物线的对称轴与⊙有怎样的位置关系,并给出证明;

(3)已知点是抛物线上的一个动点,且位于两点之间,问:当点运动到什么位置时,的面积最大?并求出此时点的坐标和的最大面积.

 

 

 

 

 

 

 

 

查看答案和解析>>


同步练习册答案