将RT△ABC沿斜边AB向右平移5cm.得到RT△DEF,已知AB=10cm.AC=8cm,求图中阴影部分三角形的周长. 查看更多

 

题目列表(包括答案和解析)

将Rt△ABC沿斜边AB向右平移5 cm,得到Rt△DEF.已知AB=10 cm,BC=8 cm,求图中阴影部分三角形的面积.

查看答案和解析>>

RtABC沿斜边AB向右平移5 cm,得到RtDEF.已知AB10 cmBC8 cm,求图中DEF的周长和DB的长.

查看答案和解析>>

探究问题:
(1)方法感悟:
如图①,在正方形ABCD中,点E,F分别为DC,BC边上的点,且满足∠EAF=45°,连接EF,求证DE+BF=EF.
感悟解题方法,并完成下列填空:
将△ADE绕点A顺时针旋转90°得到△ABG,此时AB与AD重合,由旋转可得:
AB=AD,BG=DE,∠1=∠2,∠ABG=∠D=90°,
∴∠ABG+∠ABF=90°+90°=180°,
因此,点G,B,F在同一条直线上.
∵∠EAF=45°∴∠2+∠3=∠BAD-∠EAF=90°-45°=45°.
∵∠1=∠2,∴∠1+∠3=45°.
即∠GAF=∠
 

又AG=AE,AF=AF
∴△GAF≌
 

 
=EF,故DE+BF=EF.
(2)方法迁移:
如图②,将Rt△ABC沿斜边翻折得到△ADC,点E,F分别为DC,BC边上的点,且∠EAF=
1
2
∠DAB.试猜想DE,BF,EF之间有何数量关系,并证明你的猜想.
(3)问题拓展:
如图③,在四边形ABCD中,AB=AD,E,F分别为DC,BC上的点,满足∠EAF=
1
2
∠DAB,试猜想当∠B与∠D满足什么关系时,可使得DE+BF=EF.请直接写出你的猜想(不必说明理由).
精英家教网

查看答案和解析>>

(2013•锦州)如图1,等腰直角三角板的一个锐角顶点与正方形ABCD的顶点A重合,将此三角板绕点A旋转,使三角板中该锐角的两条边分别交正方形的两边BC,DC于点E,F,连接EF.
(1)猜想BE、EF、DF三条线段之间的数量关系,并证明你的猜想;
(2)在图1中,过点A作AM⊥EF于点M,请直接写出AM和AB的数量关系;
(3)如图2,将Rt△ABC沿斜边AC翻折得到Rt△ADC,E,F分别是BC,CD边上的点,∠EAF=
12
∠BAD,连接EF,过点A作AM⊥EF于点M,试猜想AM与AB之间的数量关系.并证明你的猜想.

查看答案和解析>>

如图1,等腰直角三角板的一个锐角顶点与正方形ABCD的顶点A重合,将此三角板绕点A旋转,使三角板中该锐角的两条边分别交正方形的两边BCDC于点EF,连接EF


1)猜想BEEFDF三条线段之间的数量关系,并证明你的猜想;
2)在图1中,过点AAMEF于点M,请直接写出AMAB的数量关系;
3)如图2,将RtABC沿斜边AC翻折得到RtADCEF分别是BCCD边上的点,EAF=BAD,连接EF,过点AAMEF于点M,试猜想AMAB之间的数量关系.并证明你的猜想.

 

查看答案和解析>>


同步练习册答案