如图4.已知P是正方形ABCD对角线BD上一点.且BP = BC.则∠ACP度数是 . 查看更多

 

题目列表(包括答案和解析)

(A类5分)如图1,平行四边形ABCD中,DE⊥AC,BF⊥AC,垂足分别为E、F,求证:∠ADE=∠CBF;
(B类6分)如图2,在梯形ABCD中,AB∥CD,AD=BC,延长AB到E,使BE=DC,连接AC、CE,求证:AC=CE;
(C类7分)如图3,已知E是正方形ABCD的对角线BD上一点,EF⊥BC,EG⊥CD,垂足分别是F、G.求证:AE=FG.
精英家教网

查看答案和解析>>

(A类5分)如图1,平行四边形ABCD中,DE⊥AC,BF⊥AC,垂足分别为E、F,求证:∠ADE=∠CBF;
(B类6分)如图2,在梯形ABCD中,AB∥CD,AD=BC,延长AB到E,使BE=DC,连接AC、CE,求证:AC=CE;
(C类7分)如图3,已知E是正方形ABCD的对角线BD上一点,EF⊥BC,EG⊥CD,垂足分别是F、G.求证:AE=FG.

查看答案和解析>>

(1)如图1,平行四边形ABCD中,DE⊥AC,BF⊥AC,垂足分别为E、F,求证:∠ADE=∠CBF;
(2)如图2,在梯形ABCD中,AB∥CD,AD=BC,延长AB到E,使BE=DC,连接AC、CE,求证:AC=CE;
(3)如图3,已知E是正方形ABCD的对角线BD上一点,EF⊥BC,EG⊥CD,垂足分别是F、G.求证:AE=FG.

查看答案和解析>>

在平面直角坐标系xOy中,对于任意两点P1(x1,y1)与P2(x2,y2)的“非常距离”,给出如下定义:
若|x1-x2|≥|y1-y2|,则点P1与点P2的“非常距离”为|x1-x2|;
若|x1-x2|<|y1-y2|,则点P1与点P2的“非常距离”为|y1-y2|.
例如:点P1(1,2),点P1(3,5),因为|1-3|<|2-5|,所以点P1与点P2的“非常距离”为|2-5|=3,也就是图1中线段P1Q与线段P2Q长度的较大值(点Q为垂直于y轴的直线P1Q与垂直于x轴的直线P2Q的交点).
(1)已知点A(-
1
2
,0
),B为y轴上的一个动点,①若点A与点B的“非常距离”为2,写出满足条件的点B的坐标;②直接写出点A与点B的“非常距离”的最小值;
(2)如图2,已知C是直线y=
3
4
x+3
上的一个动点,点D的坐标是(0,1),求点C与点D的“非常距离”最小时,相应的点C的坐标.

查看答案和解析>>

完成下列各题:
(1)如图1,在等腰梯形ABCD中,E为底BC的中点,连接AE、DE.求证:△ABE≌△DCE.
(2)如图2,已知AB是⊙O的直径,AC是弦,CD切⊙O于点C,交AB的延长线于点D,∠A=30°,BD=10,求⊙O的半径.

查看答案和解析>>


同步练习册答案