题目列表(包括答案和解析)
(本题满分10分)已知二次函数
的图象与x轴分别交于点A、B,与y轴交于点C.点D是抛物线的顶点.
(1)如图①,连接AC,将△OAC沿直线AC翻折,若点O的对应点O'恰好落在该抛物
线的对称轴上,求实数a的值;
(2)如图②,在正方形EFGH中,点E、F的坐标分别是(4,4)、(4,3),边HG位于
边EF的右侧.小林同学经过探索后发现了一个正确的命题:“若点P是边EH或边HG上的
任意一点,则四条线段PA、PB、PC、PD不能与任何一个平行四边形的四条边对应相等(即
这四条线段不能构成平行四边形).”若点P是边EF或边FG上的任意一点,刚才的结论是
否也成立?请你积极探索,并写出探索过程;
(3)如图②,当点P在抛物线对称轴上时,设点P的纵坐标t是大于3的常数,试问:是
否存在一个正数a,使得四条线段PA、PB、PC、PD与一个平行四边形的四条边对应相等
(即这四条线段能构成平行四边形)?请说明理由.
![]()
(本题满分10分)已知二次函数的图象与x轴分别交于点A、B,与y轴交于点C.点D是抛物线的顶点.
(1)如图①,连接AC,将△OAC沿直线AC翻折,若点O的对应点O'恰好落在该抛物
线的对称轴上,求实数a的值;
(2)如图②,在正方形EFGH中,点E、F的坐标分别是(4,4)、(4,3),边HG位于
边EF的右侧.小林同学经过探索后发现了一个正确的命题:“若点P是边EH或边HG上的
任意一点,则四条线段PA、PB、PC、PD不能与任何一个平行四边形的四条边对应相等(即
这四条线段不能构成平行四边形).”若点P是边EF或边FG上的任意一点,刚才的结论是
否也成立?请你积极探索,并写出探索过程;
(3)如图②,当点P在抛物线对称轴上时,设点P的纵坐标t是大于3的常数,试问:是
否存在一个正数a,使得四条线段PA、PB、PC、PD与一个平行四边形的四条边对应相等
(即这四条线段能构成平行四边形)?请说明理由.
(本小题满分6分)
小明在研究了苏科版《有趣的坐标系》后,得到启发,针对正六边形OABCDE,自己设计了一个坐标系如图。该坐标系以O为原点,直线OA为x轴,以正六边形OABCDE的边长为一个单位长。坐标系中的任意一点P用一有序实数对(a,b)来表示,我们称这个有序实数对(a,b)为P点的坐标。坐标系中点的坐标的确定方法如下:
(1)x轴上点M的坐标为(m,0),其中m为M在x轴上表示的实数;
(2)y轴上点N的坐标为(0,n),其中n为N点在y轴上表示的实数;
(3)不在x、y轴上的点Q的坐标为(a,b),其中a为过点Q且与y轴平行的直线与x轴的交点在x轴上表示的实数,b为过点Q且与x轴平行饿直线与y轴的交点在y轴上表示的实数。
则:(1)分别写出点A、B、C的坐标;
(2)标出点M(2,3)的位置;
(3)若点K(x,y)为射线OD上任一点,求x与y所满足的关系式
(本小题满分6分)
小明在研究了苏科版《有趣的坐标系》后,得到启发,针对正六边形OABCDE,自己设计了一个坐标系如图。该坐标系以O为原点,直线OA为x轴,以正六边形OABCDE的边长为一个单位长。坐标系中的任意一点P用一有序实数对(a,b)来表示,我们称这个有序实数对(a,b)为P点的坐标。坐标系中点的坐标的确定方法如下:![]()
(1)x轴上点M的坐标为(m,0),其中m为M在x轴上表示的实数;
(2)y轴上点N的坐标为(0,n),其中n为N点在y轴上表示的实数;
(3)不在x、y轴上的点Q的坐标为(a,b),其中a为过点Q且与y轴平行的直线与x轴的交点在x轴上表示的实数,b为过点Q且与x轴平行饿直线与y轴的交点在y轴上表示的实数。
则:(1)分别写出点A、B、C的坐标;
(2)标出点M(2,3)的位置;
(3)若点K(x,y)为射线OD上任一点,求x与y所满足的关系式
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com