23. (1)观察发现 如(a)图.若点A.B在直线l同侧.在直线l上找一点P.使AP+BP的值最小. 做法如下:作点B关于直线l的对称点B′.连接AB′.与直线l的交点就是所求的点P.再如(b)图.在等边三角形ABC中.AB=2.点E是AB的中点.AD是高.在AD上找一点P.使BP+PE的值最小. 做法如下:作点B关于AD的对称点.恰好与点C重合.连接CE交AD于一点.则这 点就是所求的点P.故BP+PE的最小值为 . (2)实践运用 如(c)图.已知⊙O的直径CD为4.AD的度数为60°.点B是AD的中点.在直径CD上找一点P.使BP+AP的值最小.并求BP+AP的最小值. (3)拓展延伸 如(d)图.在四边形ABCD的对角线AC上找一点P.使∠APB=∠APD.保留作图痕迹.不必写出作法. 查看更多

 

题目列表(包括答案和解析)

(本题满分10分) 【小题1】(1)观察与发现:将矩形纸片AOCB折叠,使点C与点A重合,点B落在点B′ 处(如图1),折痕为EF.小明发现△ AEF为等腰三角形,你同意吗?请说明理由.(3分)

【小题2】(2)实践与应用:以点O为坐标原点,分别以矩形的边OC、OA为x轴、y轴建立如图所示的直角坐标系,若顶点B的坐标为(9,3),请求出折痕EF的长及EF所在直线的函数关系式.(4+3分)

查看答案和解析>>

(本题满分10分) 【小题1】(1)观察与发现:将矩形纸片AOCB折叠,使点C与点A重合,点B落在点B′ 处(如图1),折痕为EF.小明发现△ AEF为等腰三角形,你同意吗?请说明理由.(3分)

【小题2】(2)实践与应用:以点O为坐标原点,分别以矩形的边OC、OA为x轴、y轴建立如图所示的直角坐标系,若顶点B的坐标为(9,3),请求出折痕EF的长及EF所在直线的函数关系式.(4+3分)

查看答案和解析>>

(本题满分10分) 1.(1)观察与发现:将矩形纸片AOCB折叠,使点C与点A重合,点B落在点B′ 处(如图1),折痕为EF.小明发现△AEF为等腰三角形,你同意吗?请说明理由.(3分)

 

 

2.(2)实践与应用:以点O为坐标原点,分别以矩形的边OC、OA为x轴、y轴建立如图所示的直角坐标系,若顶点B的坐标为(9,3),请求出折痕EF的长及EF所在直线的函数关系式.(4+3分)

 

 

 

 

查看答案和解析>>

(本题满分10分) 1.(1)观察与发现:将矩形纸片AOCB折叠,使点C与点A重合,点B落在点B′ 处(如图1),折痕为EF.小明发现△ AEF为等腰三角形,你同意吗?请说明理由.(3分)

 

 

2.(2)实践与应用:以点O为坐标原点,分别以矩形的边OC、OA为x轴、y轴建立如图所示的直角坐标系,若顶点B的坐标为(9,3),请求出折痕EF的长及EF所在直线的函数关系式.(4+3分)

 

 

 

 

查看答案和解析>>


同步练习册答案