27.如图. 已知等边三角形ABC中.点D.E.F分别为边AB.AC.BC的中点.M为直线BC上一动点.△DMN为等边三角形(点M的位置改变时. △DMN也随之整体移动) . (1)如图①.当点M在点B左侧时.请你判断EN与MF有怎样的数量关系?点F是否在直线NE上?都请直接写出结论.不必证明或说明理由, (2)如图②.当点M在BC上时.其它条件不变.(1)的结论中EN与MF的数量关系是否仍然成立?若成立.请利用图②证明,若不成立.请说明理由, (3)若点M在点C右侧时.请你在图③中画出相应的图形.并判断(1)的结论中EN与MF的数量关系是否仍然成立?若成立?请直接写出结论.不必证明或说明理由. 查看更多

 

题目列表(包括答案和解析)

(本题满分12分)如图(1),矩形ABCD的一边BC在直角坐标系中x轴上,折

叠边AD,使点D落在x轴上点F处,折痕为AE,已知AB=8,AD=10,并设点B坐标为(m,0),其中m>0.

1.(1)求点E、F的坐标(用含m的式子表示);

2.(2)连接OA,若△OAF是等腰三角形,求m的值;

3.(3)如图(2),设抛物线经过A、E两点,其顶点为M,连接AM,若∠OAM=90°,求a、h、m的值.

 

查看答案和解析>>

(本题满分12分)如图(1),矩形ABCD的一边BC在直角坐标系中x轴上,折
叠边AD,使点D落在x轴上点F处,折痕为AE,已知AB=8,AD=10,并设点B坐标为(m,0),其中m>0.

【小题1】(1)求点E、F的坐标(用含m的式子表示);
【小题2】(2)连接OA,若△OAF是等腰三角形,求m的值;
【小题3】(3)如图(2),设抛物线经过A、E两点,其顶点为M,连接AM,若∠OAM=90°,求a、h、m的值.

查看答案和解析>>

(本题满分12分)如图(1),矩形ABCD的一边BC在直角坐标系中x轴上,折
叠边AD,使点D落在x轴上点F处,折痕为AE,已知AB=8,AD=10,并设点B坐标为(m,0),其中m>0.

【小题1】(1)求点E、F的坐标(用含m的式子表示);
【小题2】(2)连接OA,若△OAF是等腰三角形,求m的值;
【小题3】(3)如图(2),设抛物线经过A、E两点,其顶点为M,连接AM,若∠OAM=90°,求a、h、m的值.

查看答案和解析>>

(本题满分12分)如图(1),矩形ABCD的一边BC在直角坐标系中x轴上,折

叠边AD,使点D落在x轴上点F处,折痕为AE,已知AB=8,AD=10,并设点B坐标为(m,0),其中m>0.

1.(1)求点E、F的坐标(用含m的式子表示);

2.(2)连接OA,若△OAF是等腰三角形,求m的值;

3.(3)如图(2),设抛物线经过A、E两点,其顶点为M,连接AM,若∠OAM=90°,求a、h、m的值.

 

查看答案和解析>>

(本小题满分10分)

    学习过三角函数,我们知道在直角三角形中,一个锐角的大小与两条边长的比值相互唯一确定,因此边长与角的大小之间可以相互转化.

类似的,可以在等腰三角形中建立边角之间的联系,我们定义:等腰三角形中底边与腰的比叫做顶角的正对(sad).如图,在△ABC中,AB=AC,顶角A的正对记作sadA,这时sad A=.容易知道一个角的大小与这个角的正对值也是相互唯一确定的.

根据上述对角的正对定义,解下列问题:

(1)sad 的值为(   )A.       B.1  C.      D.2

 

(2)对于,∠A的正对值sad A的取值范围是        .

(3)已知,其中为锐角,试求sad的值.

 

 

查看答案和解析>>


同步练习册答案