28.已知抛物线()与轴相交于点A.顶点为M.直线分别与轴.轴相交于B.C两点.并且与直线AM相交于点N. (1) 如图.将△ANC沿轴翻折.若点N的对应点N′恰好落在抛物线上.AN′与轴交于点D.连结CD.求的值和四边形ADCN的面积, (2)在抛物线()上是否存在一点P.使得以P.A.C.N为顶点的四边形是平行四边形?若存在.求出P点的坐标,若不存在.试说明理由. 查看更多

 

题目列表(包括答案和解析)

(本题满分10分)已知二次函数的图象与x轴分别交于点A、B,与y轴交于点C.点D是抛物线的顶点.

    (1)如图①,连接AC,将△OAC沿直线AC翻折,若点O的对应点O'恰好落在该抛物

线的对称轴上,求实数a的值;

    (2)如图②,在正方形EFGH中,点E、F的坐标分别是(4,4)、(4,3),边HG位于

边EF的右侧.小林同学经过探索后发现了一个正确的命题:“若点P是边EH或边HG上的

任意一点,则四条线段PA、PB、PC、PD不能与任何一个平行四边形的四条边对应相等(即

这四条线段不能构成平行四边形).”若点P是边EF或边FG上的任意一点,刚才的结论是

否也成立?请你积极探索,并写出探索过程;

    (3)如图②,当点P在抛物线对称轴上时,设点P的纵坐标t是大于3的常数,试问:是

否存在一个正数a,使得四条线段PA、PB、PC、PD与一个平行四边形的四条边对应相等

(即这四条线段能构成平行四边形)?请说明理由.

 

查看答案和解析>>

(本题满分10分)已知二次函数的图象与x轴分别交于点A、B,与y轴交于点C.点D是抛物线的顶点.

    (1)如图①,连接AC,将△OAC沿直线AC翻折,若点O的对应点O'恰好落在该抛物

线的对称轴上,求实数a的值;

    (2)如图②,在正方形EFGH中,点E、F的坐标分别是(4,4)、(4,3),边HG位于

边EF的右侧.小林同学经过探索后发现了一个正确的命题:“若点P是边EH或边HG上的

任意一点,则四条线段PA、PB、PC、PD不能与任何一个平行四边形的四条边对应相等(即

这四条线段不能构成平行四边形).”若点P是边EF或边FG上的任意一点,刚才的结论是

否也成立?请你积极探索,并写出探索过程;

    (3)如图②,当点P在抛物线对称轴上时,设点P的纵坐标t是大于3的常数,试问:是

否存在一个正数a,使得四条线段PA、PB、PC、PD与一个平行四边形的四条边对应相等

(即这四条线段能构成平行四边形)?请说明理由.

 

查看答案和解析>>

(本题满分10分)(1)探究新知:

①如图,已知ADBCADBC,点MN是直线CD上任意两点.试判断△ABM与△ABN的面积是否相等。 

②如图,已知ADBEADBEABCDEF,点M是直线CD上任一点,点G是直线EF上任一点.试判断△ABM与△ABG的面积是否相等,并说明理由.  

 

 

 

 

 

 

 

 

(2)结论应用:    

如图③,抛物线的顶点为C(1,4),交x轴于点A(3,0),交y轴于点D.试探究在抛物线上是否存在除点C以外的点E,使得△ADE与△ACD的面积相等? 若存在,请求出此时点E的坐标,若不存在,请说明理由.

    

 

查看答案和解析>>

(本题满分10分)(1)探究新知:


①如图,已知ADBCADBC,点MN是直线CD上任意两点.试判断△ABM与△ABN的面积是否相等。 
②如图,已知ADBEADBEABCDEF,点M是直线CD上任一点,点G是直线EF上任一点.试判断△ABM与△ABG的面积是否相等,并说明理由.  
(2)结论应用:   
如图③,抛物线的顶点为C(1,4),交x轴于点A(3,0),交y轴于点D.试探究在抛物线上是否存在除点C以外的点E,使得△ADE与△ACD的面积相等? 若存在,请求出此时点E的坐标,若不存在,请说明理由.

查看答案和解析>>

(本题满分10分)(1)探究新知:


①如图,已知ADBCADBC,点MN是直线CD上任意两点.试判断△ABM与△ABN的面积是否相等。 
②如图,已知ADBEADBEABCDEF,点M是直线CD上任一点,点G是直线EF上任一点.试判断△ABM与△ABG的面积是否相等,并说明理由.  
(2)结论应用:   
如图③,抛物线的顶点为C(1,4),交x轴于点A(3,0),交y轴于点D.试探究在抛物线上是否存在除点C以外的点E,使得△ADE与△ACD的面积相等? 若存在,请求出此时点E的坐标,若不存在,请说明理由.

查看答案和解析>>


同步练习册答案