10.古希腊著名的毕达哥拉斯学派把1.3.6.10 - 这样的数称为“三角形数 .而把1.4. 查看更多

 

题目列表(包括答案和解析)

20、古希腊著名的毕达哥拉斯学派把1,3,6,10…这样的数称为“三角形数”,而把1,4,9,16…这样的数称为“正方形数”.从图中可以发现,任何一个大于1的“正方形数”都可以看作两个相邻“三角形数”之和.下列等式中,符合这一规律的是(  )

查看答案和解析>>

14、古希腊著名的毕达哥拉斯学派把1、3、6、10 …这样的数称为“三角形数”,而把1、4、9、16 …这样的数称为“正方形数”.从图中可以发现,任何一个大于1的“正方形数”都可以看作两个相邻“三角形数”之和.下列等式中,符合这一规律的是
(填序号)
①13=3+10;②25=9+16;③36=15+21;④49=18+31.

查看答案和解析>>

古希腊著名的毕达哥拉斯学派把1,3,6,10 …这样的数称为“三角形数”,而把1,4,9,16 …这样的数称为“正方数”. 从图中可以发现,任何一个大于1的“正方形数”都可以看作两个相邻“三角形数”之和.下列等式中,符合这一规律的是(  )
精英家教网
A、20=6+14B、25=9+16C、36=16+20D、49=21+28

查看答案和解析>>

18、古希腊著名的毕达哥拉斯学派把1、3、6、10 …这样的数称为“三角形数”,而把1、4、16┅这样的数称为“正方形数”.从图中可以发现,任何一个大于1的“正方形数”都可以看作两个相邻“三角形数”之和.
请再写出一个符合这一规律的等式:
25=10+15(答案不唯一)

查看答案和解析>>

古希腊著名的毕达哥拉斯学派把1、3、6、10…这样的数称为“三角形数”,
而把1、4、9、16…这样的数称为“正方形数”.从下图可以发现,任何一个大于1的“正方形数”都可以看作两个相邻“三角形数”之和.若把第一个三角形数记为a1,第二个三角形数记为a2,…,第n个三角形数记为an,计算a2-a1,a3-a2,a4-a3,…由此推算,a100-a99=
100
100
,a100=
5050
5050

 

查看答案和解析>>


同步练习册答案