在同一直角坐标系中.正比例函数与反比例函数的图像大致是 A B C D [答案]B 查看更多

 

题目列表(包括答案和解析)

如图,抛物线y=ax2+2ax-b与x轴交于A、B两点,与y轴正半轴交于C点,且A(-4,0),OC=2OB.
(1)求出抛物线的解析式;
(2)如图①,作矩形ABDE,使DE过点C,点P是AB边上的一动点,连接PE,作PF⊥PE交BD于点F.设线段PB的长为x,线段BF的长为
1
2
y
.当P点运动时,求y与x的函数关系式并写出自变量x的取值范围,在同一直角坐标系中,该函数的图象与图①的抛物线中y≥0的部分有何关系?
(3)如图②,在图①的抛物线中,点H为其顶点,G为抛物线上一动点(不与H重合),取点N(-1,0),作MN⊥GN且MN=
2
3
GN
(点M、N、G按逆时针顺序),当点G在抛物线上运动时,直线AM、GH是否存在某种位置关系?若存在,写出并证明你的结论;若不存在,请说明理由. 精英家教网

查看答案和解析>>

如图,抛物线y=ax2+2ax-b与x轴交于A、B两点,与y轴正半轴交于C点,且A(-4,0),OC=2OB.
(1)求出抛物线的解析式;
(2)如图①,作矩形ABDE,使DE过点C,点P是AB边上的一动点,连接PE,作PF⊥PE交BD于点F.设线段PB的长为x,线段BF的长为.当P点运动时,求y与x的函数关系式并写出自变量x的取值范围,在同一直角坐标系中,该函数的图象与图①的抛物线中y≥0的部分有何关系?
(3)如图②,在图①的抛物线中,点H为其顶点,G为抛物线上一动点(不与H重合),取点N(-1,0),作MN⊥GN且(点M、N、G按逆时针顺序),当点G在抛物线上运动时,直线AM、GH是否存在某种位置关系?若存在,写出并证明你的结论;若不存在,请说明理由.

查看答案和解析>>

如图,抛物线轴交于两点,与轴正半轴交于点,且,0),
(1)求出抛物线的解析式;
(2)如图①,作矩形,使过点,点边上的一动点,连接,作于点,设线段的长为,线段的长为,当点运动时,求的函数关系式并写出自变量的取值范围,在同一直角坐标系中,该函数的图象与图①的抛物线中≥0的部分有何关系?
(3)如图②,在图①的抛物线中,点为其顶点,为抛物线上一动点(不与重合),取点,0),作(点按逆时针顺序),当点在抛物线上运动时,直线是否存在某种位置关系?若存在,写出并证明你的结论;若不存在,请说明理由。

查看答案和解析>>

如图,抛物线y=ax2+2ax-b与x轴交于A、B两点,与y轴正半轴交于C点,且A(-4,0),OC=2OB.
(1)求出抛物线的解析式;
(2)如图①,作矩形ABDE,使DE过点C,点P是AB边上的一动点,连接PE,作PF⊥PE交BD于点F.设线段PB的长为x,线段BF的长为数学公式.当P点运动时,求y与x的函数关系式并写出自变量x的取值范围,在同一直角坐标系中,该函数的图象与图①的抛物线中y≥0的部分有何关系?
(3)如图②,在图①的抛物线中,点H为其顶点,G为抛物线上一动点(不与H重合),取点N(-1,0),作MN⊥GN且数学公式(点M、N、G按逆时针顺序),当点G在抛物线上运动时,直线AM、GH是否存在某种位置关系?若存在,写出并证明你的结论;若不存在,请说明理由.

查看答案和解析>>

精英家教网如图,在同一直角坐标系中,二次函数的图象与两坐标轴分别交于A(-1,0)、点B(3,0)和点C(0,-3),一次函数的图象与抛物线交于B、C两点.
(1)二次函数的解析式为
 

(2)当自变量x
 
时,两函数的函数值都随x增大而增大;
(3)当自变量
 
时,一次函数值大于二次函数值;
(4)当自变量x
 
时,两函数的函数值的积小于0.

查看答案和解析>>


同步练习册答案