28. 已知直线y=x+4与x轴.y轴分别交于A.B两点. ∠ABC=60°.BC与x轴交于点C. (1)试确定直线BC的解析式. (2)若动点P从A点出发沿AC向点C运动.同时动点Q从C点出发沿CBA向点A运动 .动点P的运动速度是每秒1个单位长度.动点Q的运动速度是每秒2个单位长度.设△APQ的面积为S.P点的运动时间为t秒.求S与t的函数关系式.并写出自变量的取值范围. 的条件下.当△APQ的面积最大时.y轴上有一点M.平面内是否存在一点N.使以A.Q.M.N为顶点的四边形为菱形?若存在.请直接写出N点的坐标,若不存在.请说明理由. 查看更多

 

题目列表(包括答案和解析)

(本小题满分10分)已知直线y=x+4与x轴,y轴分别交于A、B两点, ∠ABC=60°,BC与x轴交于点C.

(1)试确定直线BC的解析式.

(2)若动点P从A点出发沿AC向点C运动(不与A、C重合),同时动点Q从C点出发

沿CBA向点A运动(不与C、A重合),动点P的运动速度是每秒1个单位长度,动点Q

的运动速度是每秒2个单位长度.设△APQ的面积为S,P点的运动时间为t秒,求S与t的

函数关系式,并写出自变量的取值范围.

(3)在(2)的条件下,当△APQ的面积最大时,y轴上有一点M,平面内是否存在一点

N,使以A、Q、M、N为顶点的四边形为菱形?若存在,请直接写出N点的坐标;若不存

在,请说明理由.

 

查看答案和解析>>

(本小题满分10分)已知:如图,⊙轴交于C、D两点,圆心的坐标

为(1,0),⊙的半径为,过点C作⊙的切线交轴于点B(-4,0)

 

 

 

 

 

 

 

 

 


1.(1)求切线BC的解析式;

2.(2)若点P是第一象限内⊙上一点,过点P作⊙A的切线与直线BC相交于点G

且∠CGP=120°,求点的坐标;

3.(3)向左移动⊙(圆心始终保持在轴上),与直线BC交于EF,在移动过程中是否存在点,使得△AEF是直角三角形?若存在,求出点 的坐标,若不存在,请说明理由.

 

查看答案和解析>>

(本小题满分10分)已知:如图,⊙轴交于C、D两点,圆心的坐标
为(1,0),⊙的半径为,过点C作⊙的切线交轴于点B(-4,0)
 
【小题1】(1)求切线BC的解析式;
【小题2】(2)若点P是第一象限内⊙上一点,过点P作⊙A的切线与直线BC相交于点G
且∠CGP=120°,求点的坐标;
【小题3】(3)向左移动⊙(圆心始终保持在轴上),与直线BC交于EF,在移动过程中是否存在点,使得△AEF是直角三角形?若存在,求出点 的坐标,若不存在,请说明理由.

查看答案和解析>>

(本小题满分10分)已知直线y=x+4与x轴,y轴分别交于A、B两点,∠ABC=60°,BC与x轴交于点C.
(1)试确定直线BC的解析式.
(2)若动点P从A点出发沿AC向点C运动(不与A、C重合),同时动点Q从C点出发
沿CBA向点A运动(不与C、A重合) ,动点P的运动速度是每秒1个单位长度,动点Q
的运动速度是每秒2个单位长度.设△APQ的面积为S,P点的运动时间为t秒,求S与t的
函数关系式,并写出自变量的取值范围.
(3)在(2)的条件下,当△APQ的面积最大时,y轴上有一点M,平面内是否存在一点
N,使以A、Q、M、N为顶点的四边形为菱形?若存在,请直接写出N点的坐标;若不存
在,请说明理由.

查看答案和解析>>

(本小题满分10分)已知直线y=x+4与x轴,y轴分别交于A、B两点,∠ABC=60°,BC与x轴交于点C.
(1)试确定直线BC的解析式.
(2)若动点P从A点出发沿AC向点C运动(不与A、C重合),同时动点Q从C点出发
沿CBA向点A运动(不与C、A重合) ,动点P的运动速度是每秒1个单位长度,动点Q
的运动速度是每秒2个单位长度.设△APQ的面积为S,P点的运动时间为t秒,求S与t的
函数关系式,并写出自变量的取值范围.
(3)在(2)的条件下,当△APQ的面积最大时,y轴上有一点M,平面内是否存在一点
N,使以A、Q、M、N为顶点的四边形为菱形?若存在,请直接写出N点的坐标;若不存
在,请说明理由.

查看答案和解析>>


同步练习册答案