22.如图9.已知抛物线经过定点A(1.0).它的顶点P是y轴正半轴上的一个动点.P点关于x轴的对称点为P′.过P′ 作x轴的平行线交抛物线于B.D两点(B点在y轴右侧).直线BA交y轴于C点.按从特殊到一般的规律探究线段CA与CB的比值: (1)当P点坐标为(0.1)时.写出抛物线的解析式并求线段CA与CB的比值, (2)若P点坐标为(0.m)时(m为任意正实数).线段CA与CB的比值是否与⑴所求的比值相同?请说明理由. [答案]解:⑴ 设抛物线的解析式为 . 抛物线经过 . . . , ∥,, 由. ,. .∽. . ⑵ 设抛物线的解析式为 . . ∥. .... .. 同⑴得 . 查看更多

 

题目列表(包括答案和解析)

如图l,已知抛物线经过坐标原点O和x轴上另一点D,顶点的坐标为(2,4).直角三角形ABC的顶点A与点O重合,AC,AB分别在x轴,y轴上,且AC=3,AB=4.
(1)直线BC的解析式为
y=
4
3
x+4
y=
4
3
x+4

(2)求该抛物线的函数关系式;
(3)将直角三角形ABC以每秒1个单位长度的速度从图1所示的位置沿x轴的正方向匀速平行移动,同时一动点P也以相同的速度从点A出发向B匀速移动,设它们运动的时间为t秒(0≤t≤2),AB边与该抛物线的交点为Q(如图2所示).
①设△CPQ的面积为S,试问S是否存在最大值?若存在,求出这个最大值;若不存在,请说明理由;
②直接写出直线BC与抛物线有唯一的公共点时t的值.

查看答案和解析>>

(2012•淮滨县模拟)如图1,已知抛物线经过坐标原点O和x轴上另一点E,顶点M的坐标为(2,4);矩形ABCD的顶点A与点O重合,AD、AB分别在x轴、y轴上,且AD=2,AB=3.
(1)求该抛物线的函数解析式;
(2)将矩形ABCD以每秒1个单位长度的速度从图1所示的位置沿x轴的正方向匀速平行移动,同时一动点P也以相同的速度从点A出发向B匀速移动,设它们运动的时间为t秒(0≤t≤3),直线AB与该抛物线的交点为N(如图2所示).
①当t=2秒时,判断点P是否在直线ME上,并说明理由;
②设以P、N、C、D为顶点的多边形面积为S,试问S是否存在最大值?若存在,求出这个最大值;若不存在,请说明理由.

查看答案和解析>>

如图1,已知抛物线C经过原点,对称轴与抛物线相交于第三象限的点M,与x轴相交于点N,且

(1)求抛物线C的解析式;
(2)将抛物线C绕原点O旋转1800得到抛物线,抛物线与x轴的另一交点为A,B为抛物线上横坐标为2的点。
①若P为线段AB上一动点,PD⊥y轴于点D,求△APD面积的最大值;
②过线段OA上的两点E、F分别作x轴的垂线,交折线O-B-A于E1、F1,再分别以线段EE1、FF1为边作如图2所示的等边△AE1E2、等边△AF1F2,点E以每秒1个长度单位的速度从点O向点A运动,点F以每秒1个长度单位的速度从点A向点O运动,当△AE1E2有一边与△AF1F2的某一边在同一直线上时,求时间t的值。

查看答案和解析>>

如图1,已知抛物线经过原点O和x轴上另一点D,顶点的坐标为(2,4),Rt△ABC的顶点A与点O重合,AC、AB分别在x轴、y轴上,且AC =3,AB =4。
(1)直线BC的解析式为                
(2)求该抛物线的解析式。
(3)如图2,将Rt△ABC以每秒1个单位长度的速度沿x轴的正方向平行移动,同时一动点P也以相同的速度从点A出发向点B移动,设它们运动的时间为t秒(0≤t≤2),AB边与该抛物线的交点为Q。  
①连接CP、CQ,设△CPQ的面积为S,试问S是否存在最大值?若存在,求出这个最大值;若不存在,请说明理由。 
②直接写出当直线BC与抛物线有唯一的公共点时t的值。  
 

查看答案和解析>>

如图l,已知抛物线经过坐标原点O和x轴上另一点D,顶点的坐标为(2,4).直角三角形ABC的顶点A与点O重合,AC,AB分别在x轴,y轴上,且AC=3,AB=4.
(1)直线BC的解析式为______;
(2)求该抛物线的函数关系式;
(3)将直角三角形ABC以每秒1个单位长度的速度从图1所示的位置沿x轴的正方向匀速平行移动,同时一动点P也以相同的速度从点A出发向B匀速移动,设它们运动的时间为t秒(0≤t≤2),AB边与该抛物线的交点为Q(如图2所示).
①设△CPQ的面积为S,试问S是否存在最大值?若存在,求出这个最大值;若不存在,请说明理由;
②直接写出直线BC与抛物线有唯一的公共点时t的值.
作业宝

查看答案和解析>>


同步练习册答案