如图.ABCD是一张矩形纸片.AD=BC=1,AB=CD=5.在矩形ABCD的边AB上取一点M.在CD上取一点N.将纸片沿MN折叠.使MB与DN交于点K.得到△MNK. (1)若∠1=70°.求∠MNK的度数. (2)△MNK的面积能否小于?若能.求出此时∠1的度数,若不能.试说明理由. (3)如何折叠能够使△MNK的面积最大?请你利用备用图探究可能出现的情况.求出最大值. [答案] 解:∵ABCD是矩形. ∴AM∥DN. ∴∠KNM=∠1. ∵∠KMN=∠1. ∴∠KNM=∠KMN. ∵∠1=70°. ∴∠KNM=∠KMN=70°. ∴∠MNK=40°. (2)不能. 过M点作ME⊥DN.垂足为点E.则ME=AD=1, 由(1)知∠KNM=∠KMN. ∴MK=NK. 又MK≥ME, ∴NK≥1. ∴. ∴△MNK的面积最小值为.不可能小于. (3)分两种情况: 情况一:将矩形纸片对折.使点B与点D重合.此时点K也与点D重合. 设MK=MD=x.则AM=5-x.由勾股定理.得 , 解得.. 即. ∴. 情况二:将矩形纸片沿对角线AC对折.此时折痕为AC. 设MK=AK= CK=x.则DK=5-x.同理可得 即. ∴. ∴△MNK的面积最大值为1.3. 查看更多

 

题目列表(包括答案和解析)

18、如图,ABCD是一张矩形纸片,点O为矩形对角线的交点.直线MN经过点O交AD于M,交BC于N.操作:先沿直线MN剪开,并将直角梯形MNCD绕点O旋转
度后(填入一个你认为正确的序号:①90°;②180°;③270°;④360°),恰与直角梯形NMAB完全重合;再将重合后的直角梯形MNCD以直线MN为轴翻转180°后所得到的图形是下列中的
D
.(填写正确图形的代号)

查看答案和解析>>

22、如图,ABCD是一张矩形纸片,点O为矩形对角线的交点.直线MN经过点O交AD于M,交BC于N.
操作:先沿直线MN剪开,并将直角梯形MNCD绕点O旋转
(1)
度后(填入一个你认为正确的序号:(1)90°;(2)180°;(3)270°;(4)360°),恰与直角梯形NMAB完全重合;再将重合后的直角梯形MNCD以直线MN为轴翻转180°后所得到的图形是下列中的
D
.(填写正确图形的代号)

A、B、C、D、

查看答案和解析>>

15、如图,ABCD是一张矩形纸片,沿过点D的折痕将A角翻折,使得点A落在BC上,折痕交AB于点E,若BC=2AB,则∠A′EB=
30°

查看答案和解析>>

20、如图,ABCD是一张矩形纸片,点O为矩形对角线的交点,直线MN经过点O交AD于M,交BC于N.
操作:先沿直线MN剪开,并将直角梯形MNCD绕O点旋转180°后,恰好与直角梯形NMAB完全重合,再将重合后的直角梯形MNCD以直线MN为轴翻转180°后所得的图形可能是(  )

查看答案和解析>>

如图,ABCD是一张矩形纸片,AD=BC=1,AB=CD=5.在矩形ABCD的边AB上取一点M,在CD上取一点N,将纸片沿MN折叠,使MB与DN交于点K,得到△MNK.
精英家教网
(1)若∠1=70°,求∠MKN的度数;
(2)△MNK的面积能否小于
12
?若能,求出此时∠1的度数;若不能,试说明理由;
(3)如何折叠能够使△MNK的面积最大?请你用备用图探究可能出现的情况,求最大值.

查看答案和解析>>


同步练习册答案