如图①.小慧同学吧一个正三角形纸片放在直线l1上.OA边与直线l1重合.然后将三角形纸片绕着顶点A按顺时针方向旋转120°.此时点O运动到了点O1处.点B运动到了点B1处,小慧又将三角形纸片AO1B1绕B1点按顺时针方向旋转120°.点A运动到了点A1处.点O1运动到了点O2处(即顶点O经过上述两次旋转到达O2处). 小慧还发现:三角形纸片在上述两次旋转过程中.顶点O运动所形成的图形是两段圆弧.即弧OO1和弧O1O2.顶点O所经过的路程是这两段圆弧的长度之和.并且这两端圆弧与直线l1围成的图形面积等于扇形AOO1的面积.△AO1B1的面积和扇形B1O1O2的面积之和. 小慧进行类比研究:如图②.她把边长为1的正方形纸片OABC放在直线l2上.OA边与直线l2重合.然后将正方形纸片绕着顶点A按顺时针方向旋转90°.此时点O运动到了点O1处.点C运动到了点C1处.点B运动到了点B1处,小慧又将正方形纸片AO1C1B1绕B1点按顺时针方向旋转90°.--.按上述方法经过若干次旋转后.她提出了如下问题: 问题①:若正方形纸片OABC按上述方法经过3次旋转.求顶点O经过的路程.并求顶点O在此运动过程中所形成的图形与直线l2围成图形的面积,若正方形OABC按上述方法经过5次旋转.求顶点O经过的路程, 问题②:正方形纸片OABC按上述方法经过多少次旋转.顶点O经过的路程是π? 请你解答上述两个问题. [答案]解问题①:如图.正方形纸片OABC经过3次旋转.顶点O运动所形成的图形是三段弧.即弧OO1.弧O1O2以及弧O2O3. ∴顶点O运动过程中经过的路程为 . 顶点O在此运动过程中所形成的图形与直线l2围成图形的面积为 =1+π. 正方形OABC经过5次旋转.顶点O经过的路程为 . 问题②:∵方形OABC经过4次旋转.顶点O经过的路程为 ∴π=20×π+π. ∴正方形纸片OABC经过了81次旋转. 查看更多

 

题目列表(包括答案和解析)

如图①,小慧同学把一个正三角形纸片(即△OAB)放在直线l1上.OA边与直线l1重合,然后将三角形纸片绕着顶点A按顺吋针方向旋转120°,此时点O运动到了点O1处,点B运动到了点B1处;小慧又将三角形纸片AO1B1,绕点B1按顺吋针方向旋转 120°,此时点A运动到了点A1处,点O1运动到了点O2处(即顶点O经过上述两次旋转到达O2处).
小慧还发现:三角形纸片在上述两次旋转的过程中.顶点O运动所形成的图形是两段圆弧,即
OO1
O1O2
,顶点O所经过的路程是这两段圆弧的长度之和,并且这两段圆弧与直线l1围成的图形面积等于扇形A001的面积、△AO1B1的面积和扇形B1O1O2的面积之和.
小慧进行类比研究:如图②,她把边长为1的正方形纸片0ABC放在直线l2上,0A边与直线l2重合,然后将正方形纸片绕着顶点A按顺时针方向旋转90°,此时点O运动到了点O1处(即点B处),点C运动到了点C1处,点B运动到了点B2处,小慧又将正方形纸片 AO1C1B1绕顶点B1按顺时针方向旋转90°,….按上述方法经过若干次旋转后,她提出了如下问题:
问题①:若正方形纸片0ABC按上述方法经过3次旋转,求顶点0经过的路程,并求顶点O在此运动过程中所形成的图形与直线l2围成图形的面积;若正方形纸片OABC按上述方法经过5次旋转.求顶点O经过的路程;
问题②:正方形纸片OABC按上述方法经过多少次旋转,顶点0经过的路程是
41+20
2
2
π

精英家教网

查看答案和解析>>

(本题满分9分)如图①,小慧同学把一个正三角形纸片(即△OAB)放在直线l1上,OA边与直线l1重合,然后将三角形纸片绕着顶点A按顺时针方向旋转120°,此时点O运动到了点O1处,点B运动到了点B1处;小慧又将三角形纸片AO1B1绕点B1按顺时针方向旋转120°,此时点A运动到了点A1处,点O1运动到了点O2处(即顶点O经过上述两次旋转到达O2处).
小慧还发现:三角形纸片在上述两次旋转的过程中,顶点O运动所形成的图形是两段
圆弧,即,顶点O所经过的路程是这两段圆弧的长度之和,并且这两段圆弧
与直线l1围成的图形面积等于扇形AOO1的面积、△AO1B1的面积和扇形B1O1O2的面积之
和.
小慧进行类比研究:如图②,她把边长为1的正方形纸片OABC放在直线l2上,OA
边与直线l2重合,然后将正方形纸片绕着顶点^按顺时针方向旋转90°,此时点O运动到
了点O1处(即点B处),点C运动到了点C1处,点B运动到了点B1处;小慧又将正方形
纸片AO1C1B1绕顶点B1按顺时针方向旋转90°,……,按上述方法经过若干次旋转后.她
提出了如下问题:
问题①:若正方形纸片OABC接上述方法经过3次旋转,求顶点O经过的路程,并
求顶点O在此运动过程中所形成的图形与直线l2围成图形的面积;若正方形纸片OA BC
按上述方法经过5次旋转,求顶点O经过的路程;
问题②:正方形纸片OABC按上述方法经过多少次旋转,顶点O经过的路程是
?
请你解答上述两个问题.

查看答案和解析>>

(本题满分9分)如图①,小慧同学把一个正三角形纸片(即△OAB)放在直线l1上,OA边与直线l1重合,然后将三角形纸片绕着顶点A按顺时针方向旋转120°,此时点O运动到了点O1处,点B运动到了点B1处;小慧又将三角形纸片AO1B1绕点B1按顺时针方向旋转120°,此时点A运动到了点A1处,点O1运动到了点O2处(即顶点O经过上述两次旋转到达O2处).

    小慧还发现:三角形纸片在上述两次旋转的过程中,顶点O运动所形成的图形是两段

圆弧,即,顶点O所经过的路程是这两段圆弧的长度之和,并且这两段圆弧

与直线l1围成的图形面积等于扇形AOO1的面积、△AO1B1的面积和扇形B1O1O2的面积之

和.

    小慧进行类比研究:如图②,她把边长为1的正方形纸片OABC放在直线l2上,OA

边与直线l2重合,然后将正方形纸片绕着顶点^按顺时针方向旋转90°,此时点O运动到

了点O1处(即点B处),点C运动到了点C1处,点B运动到了点B1处;小慧又将正方形

纸片AO1C1B1绕顶点B1按顺时针方向旋转90°,……,按上述方法经过若干次旋转后.她

提出了如下问题:

     问题①:若正方形纸片OABC接上述方法经过3次旋转,求顶点O经过的路程,并

求顶点O在此运动过程中所形成的图形与直线l2围成图形的面积;若正方形纸片OA BC

按上述方法经过5次旋转,求顶点O经过的路程;

     问题②:正方形纸片OABC按上述方法经过多少次旋转,顶点O经过的路程是

?

       请你解答上述两个问题.

 

查看答案和解析>>

(本题满分9分)如图①,小慧同学把一个正三角形纸片(即△OAB)放在直线l1上,OA边与直线l1重合,然后将三角形纸片绕着顶点A按顺时针方向旋转120°,此时点O运动到了点O1处,点B运动到了点B1处;小慧又将三角形纸片AO1B1绕点B1按顺时针方向旋转120°,此时点A运动到了点A1处,点O1运动到了点O2处(即顶点O经过上述两次旋转到达O2处).
小慧还发现:三角形纸片在上述两次旋转的过程中,顶点O运动所形成的图形是两段
圆弧,即,顶点O所经过的路程是这两段圆弧的长度之和,并且这两段圆弧
与直线l1围成的图形面积等于扇形AOO1的面积、△AO1B1的面积和扇形B1O1O2的面积之
和.
小慧进行类比研究:如图②,她把边长为1的正方形纸片OABC放在直线l2上,OA
边与直线l2重合,然后将正方形纸片绕着顶点^按顺时针方向旋转90°,此时点O运动到
了点O1处(即点B处),点C运动到了点C1处,点B运动到了点B1处;小慧又将正方形
纸片AO1C1B1绕顶点B1按顺时针方向旋转90°,……,按上述方法经过若干次旋转后.她
提出了如下问题:
问题①:若正方形纸片OABC接上述方法经过3次旋转,求顶点O经过的路程,并
求顶点O在此运动过程中所形成的图形与直线l2围成图形的面积;若正方形纸片OA BC
按上述方法经过5次旋转,求顶点O经过的路程;
问题②:正方形纸片OABC按上述方法经过多少次旋转,顶点O经过的路程是
?
请你解答上述两个问题.

查看答案和解析>>

(本题满分9分)如图①,小慧同学把一个正三角形纸片(即△OAB)放在直线l1上,OA边与直线l1重合,然后将三角形纸片绕着顶点A按顺时针方向旋转120°,此时点O运动到了点O1处,点B运动到了点B1处;小慧又将三角形纸片AO1B1绕点B1按顺时针方向旋转120°,此时点A运动到了点A1处,点O1运动到了点O2处(即顶点O经过上述两次旋转到达O2处).

    小慧还发现:三角形纸片在上述两次旋转的过程中,顶点O运动所形成的图形是两段

圆弧,即,顶点O所经过的路程是这两段圆弧的长度之和,并且这两段圆弧

与直线l1围成的图形面积等于扇形AOO1的面积、△AO1B1的面积和扇形B1O1O2的面积之

和.

    小慧进行类比研究:如图②,她把边长为1的正方形纸片OABC放在直线l2上,OA

边与直线l2重合,然后将正方形纸片绕着顶点^按顺时针方向旋转90°,此时点O运动到

了点O1处(即点B处),点C运动到了点C1处,点B运动到了点B1处;小慧又将正方形

纸片AO1C1B1绕顶点B1按顺时针方向旋转90°,……,按上述方法经过若干次旋转后.她

提出了如下问题:

     问题①:若正方形纸片OABC接上述方法经过3次旋转,求顶点O经过的路程,并

求顶点O在此运动过程中所形成的图形与直线l2围成图形的面积;若正方形纸片OA BC

按上述方法经过5次旋转,求顶点O经过的路程;

     问题②:正方形纸片OABC按上述方法经过多少次旋转,顶点O经过的路程是

?

       请你解答上述两个问题.

 

查看答案和解析>>


同步练习册答案