如图9.点P是正方形ABCD边AB上一点(不与点A.B重合).连接PD并将线段PD绕点P顺时针方向旋转90°得到线段PE.PE交边BC于点F.连接BE.DF. (1)求证:∠ADP=∠EPB, (2)求∠CBE的度数, (3)当的值等于多少时.△PFD∽△BFP?并说明理由. [答案] (1)证明:∵四边形ABCD是正方形 ∴∠A=∠PBC=90°.AB=AD.∴∠ADP+∠APD=90°················ 1分 ∵∠DPE=90° ∴∠APD+∠EPB=90° ∴∠ADP=∠EPB.········································································································ 2分 (2)过点E作EG⊥AB交AB的延长线于点G.则∠EGP=∠A=90°·· 3分 又∵∠ADP=∠EPB.PD=PE.∴△PAD≌△EGP ∴EG=AP.AD=AB=PG.∴AP=EG=BG················································· 4分 ∴∠CBE=∠EBG=45°.························································································· 5分 (3)方法一: 当时.△PFE∽△BFP.·············································································· 6分 ∵∠ADP=∠FPB.∠A=∠PBF.∴△ADP∽△BPF······························ 7分 设AD=AB=a.则AP=PB=.∴BF=BP····················· 8分 ∴. ∴··········································································································· 9分 又∵∠DPF=∠PBF=90°.∴△ADP∽△BFP·········································· 10分 方法二: 假设△ADP∽△BFP.则.·································································· 6分 ∵∠ADP=∠FPB.∠A=∠PBF.∴△ADP∽△BPF··························· 7分 ∴.··············································································································· 8分 ∴.··············································································································· 9分 ∴PB=AP. ∴当时.△PFE∽△BFP. 10分 查看更多

 

题目列表(包括答案和解析)

如图1,点G是正方形ABCD的边DC上任意一点(不与D、C两点重合),连接AC、AG,作BF⊥AG于点F,DE⊥AG于点E.
(1)试判断线段DE、BF的长的大小关系,说明理由;
(2)试探究线段EF与DE、BF的长有何等量关系,并给予证明;
(3)如本题图2,若E′是点E关于直线AC的对称点,连接BE′,试探究DG、AG满足什么条件时,射线BE′是∠FBC的角平分线?为什么?

查看答案和解析>>

27、已知如图1,点P是正方形ABCD的BC边上一动点,AP交对角线BD于点E,过点B作BQ⊥AP于G点,交对角线AC于F,交边CD于Q点.
(1)小聪在研究图形时发现图中除等腰直角三角形外,还有几对三角形全等.请你写出其中三对全等三角形,并选择其中一对全等三角形证明;
(2)小明在研究过程中连接PE,提出猜想:在点P运动过程中,是否存在∠APB=∠CPF?若存在,点P应满足何条件并说明理由;若不存在,为什么?

查看答案和解析>>

如图,动点P是正方形ABCD边AB上运动(不与点A、B重合),连接PD并将线段PD绕点P顺时针方向旋转90°得到线段PE,PE交边BC于点F,连接BE、DF.
(1)求证:∠ADP=∠EPB.
(2)若正方形ABCD边长为4,点F能否为边BC的中点?如果能,请你求出AP的长;如果不能,请说明理由.
(3)当
APAB
的值等于多少时,△PFD∽△BFP?并说明理由.

查看答案和解析>>

(1)如图1,点M是正方形ABCD内一定点,请你在图1中过点M作一条直线,使它将矩形ABCD分成相等的两部分.(只需保留作图痕迹)
(2)如图2,在平面直角坐标系中,直角梯形OBCD是我市城东新区开发用地示意图,其中DC∥OB,OB=8,BC=6,CD=6.新区管委会(其占地面积不计)设在点P(5,3)处,为了方便驻区单位,准备过点P修一条笔直的道路(路的宽度不计),并且使这条路所在的直线L将直角梯形OBCD分成面积相等的两部分,你认为直线L是否存在?若存在,求出直线L的表达式;若不存在,请说明理由.

查看答案和解析>>

如图9,点P是正方形ABCD边AB上一点(不与点A.B重合),连接PD并将线段PD绕点P顺时针方向旋转90°得到线段PE, PE交边BC于点F.连接BE、DF。

(1)求证:∠ADP=∠EPB;

(2)求∠CBE的度数;

(3)当的值等于多少时.△PFD∽△BFP?并说明理由.

 

 

查看答案和解析>>


同步练习册答案