已知:如图.锐角△ABC的两条高BD.CE相交于点O.且OB=OC. (1)求证:△ABC是等腰三角形, (2)判断点O是否在∠BAC的角平分线上.并说明理由. [答案](1)证明:∵OB=OC ∴∠OBC=∠OCB ∵BD.CE是两条高 ∴∠BDC=∠CEB=90° 又∵BC=CB ∴△BDC≌△CEB(AAS) ∴∠DBC=∠ECB ∴AB=AC ∴△ABC是等腰三角形. (2)点O是在∠BAC的角平分线上.连结AO. ∵ △BDC≌△CEB ∴DC=EB, ∵OB=OC ∴ OD=OE 又∵∠BDC=∠CEB=90° AO=AO ∴△ADO≌△AEO(HL) ∴∠DAO=∠EAO ∴点O是在∠BAC的角平分线上. 查看更多

 

题目列表(包括答案和解析)

阅读下列材料:
   李老师提出一个问题:“已知:如图1,AB=m(m>0),∠BAC=α(α为锐角),在射线AC上取一点D,使构成的△ABD唯一确定,试确定线段BD的取值范围.”
   小明同学说出了自己的解题思路:以点B为圆心,以m为半径画圆(如图2所示),D为⊙B与射线AC的交点(不与点A重合),连结BD,所以,当BD=m时,构成的△ABD是唯一确定的.
    李老师说:“小明同学画出的三角形是正确的,但是他的解答不够全面.”

对于李老师所提出的问题,请给出你认为正确的解答(写出BD的取值范围,并在备用图中画出对应的图形,不写作法,保留作图痕迹).

查看答案和解析>>

已知:如图,锐角△ABC内接于⊙O,∠ABC=45°;点D是
BC
上一点,过点D的切线DE交AC的延长线于点E,且DE∥BC;连接AD、BD、BE,AD的垂线AF与DC的延长线交于点F.
(1)求证:△ABD∽△ADE;
(2)若AB=8cm,AE=6cm,求△DAF的面积.

查看答案和解析>>

问题提出

我们在分析解决某些数学问题时,经常要比较两个数或代数式的大小,而解决问题的策略一般要进行一定的转化,其中“作差法”就是常用的方法之一.所谓“作差法”:就是通过作差、变形,并利用差的符号确定他们的大小,即要比较代数式M、N的大小,只要作出它们的差M-N,若M-N>0,则M>N;若M-N=0,则M=N;若M-N<0,则M<N.

问题解决

如图1,把边长为a+b(a≠b)的大正方形分割成两个边长分别是a、b的小正方形及两个矩形,试比较两个小正方形面积之和M与两个矩形面积之和N的大小.

解:由图可知:M=a2+b2,N=2ab.

∴M-N=a2+b2-2ab=(a-b)2

∵a≠b,∴(a-b)2>0.

∴M-N>0.

∴M>N.

类比应用

1.已知:多项式M =2a2-a+1 ,N =a2-2a .试比较M与N的大小.

2.已知:如图,锐角△ABC (其中BC为a,AC为b,AB为c)三边

满足a <b < c ,现将△ABC 补成长方形,使得△ABC的两个顶

点为长方形的两个端点,第三个顶点落在长方形的这一边的对边上。                     

     ①这样的长方形可以画       个;

②所画的长方形中哪个周长最小?为什么?

拓展延伸                                                                                                                               

     已知:如图,锐角△ABC (其中BC为a,AC为b,AB为c)三边满足a <b < c ,画其BC边上的内接正方形EFGH , 使E、F两点在边BC上,G、H分别在边AC、AB上,同样还可画AC、AB边上的内接正方形,问哪条边上的内接正方形面积最大?为什么?

 

 

查看答案和解析>>


【问题提出】我们在分析解决某些数学问题时,经常要比较两个数或代数式的大小,而解决问题的策略一般要进行一定的转化,其中“作差法”就是常用的方法之一.所谓“作差法”:就是通过作差、变形,并利用差的符号确定他们的大小,即要比较代数式M、N的大小,只要作出它们的差M-N,若M-N>0,则M>N;若M-N=0,则M=N;若M-N<0,则M<N.
【问题解决】如图1,把边长为a+b(a≠b)的大正方形分割成两个边长分别是a、b的小正方形及两个矩形,试比较两个小正方形面积之和M与两个矩形面积之和N的大小.

解:由图可知:

∵a≠b,∴>0.
∴M-N>0.∴M>N.
【类比应用】(1)已知:多项式M =2a2-a+1 ,N =a2-2a .
试比较M与N的大小.
(2)已知:如图2,锐角△ABC (其中BC为a ,AC为 b,
AB为c)三边满足a <b < c ,现将△ABC 补成长方形,
使得△ABC的两个顶点为长方形的两个端点,第三个顶点落
在长方形的这一边的对边上。
 
①这样的长方形可以画     个;
②所画的长方形中哪个周长最小?为什么?
【拓展延伸】 已知:如图,锐角△ABC (其中BC为a,AC为b,AB为c)三边满足a <b < c ,画其BC边上的内接正方形EFGH , 使E、F两点在边BC上,G、H分别在边AC、AB上,同样还可画AC、AB边上的内接正方形,问哪条边上的内接正方形面积最大?为什么?

查看答案和解析>>

问题提出
我们在分析解决某些数学问题时,经常要比较两个数或代数式的大小,而解决问题的策略一般要进行一定的转化,其中“作差法”就是常用的方法之一.所谓“作差法”:就是通过作差、变形,并利用差的符号确定他们的大小,即要比较代数式M、N的大小,只要作出它们的差M-N,若M-N>0,则M>N;若M-N=0,则M=N;若M-N<0,则M<N.
问题解决
如图1,把边长为a+b(a≠b)的大正方形分割成两个边长分别是a、b的小正方形及两个矩形,试比较两个小正方形面积之和M与两个矩形面积之和N的大小.

解:由图可知:M=a2+b2,N=2ab.
∴M-N=a2+b2-2ab=(a-b)2
∵a≠b,∴(a-b)2>0.
∴M-N>0.
∴M>N.
类比应用
【小题1】已知:多项式M =2a2-a+1 ,N =a2-2a.试比较M与N的大小.
【小题2】已知:如图,锐角△ABC (其中BC为a,AC为b,AB为c)三边
满足a <b < c ,现将△ABC 补成长方形,使得△ABC的两个顶
点为长方形的两个端点,第三个顶点落在长方形的这一边的对边上。                     
①这样的长方形可以画       个;
②所画的长方形中哪个周长最小?为什么?

拓展延伸                                                                                               
已知:如图,锐角△ABC (其中BC为a,AC为b,AB为c)三边满足a <b < c ,画其BC边上的内接正方形EFGH , 使E、F两点在边BC上,G、H分别在边AC、AB上,同样还可画AC、AB边上的内接正方形,问哪条边上的内接正方形面积最大?为什么?

查看答案和解析>>


同步练习册答案