计算: [答案].解:原式 查看更多

 

题目列表(包括答案和解析)

下面是芩芩用换元法解方程2(x+1)2+3(x+1)(x-2)-2(x-2)2=0的解答过程,请你判断是否正确.若有错误,请按上述思路求出正确答案.
解:设x+1=m,x-2=n,则原方程可化为:2m2+3mn-2n2=0,
即a=2,b=3n,c=-2n2
∴m=
3n±
9n2-4×2(-2n2)
2
=
3n±5n
2

即 m1=4n,m2=-n.
所以有x+1=4(x-2)或x+1=-(x-2),
∴x1=3,x2=
1
2

查看答案和解析>>

《数书九章》中有一题目为:望故远近.内容如下:问敌军处北山下原,不知相去远近.乃于平地立一表(标杆),高四尺,人退表九百步(一步为五尺),遥望山原,适与表端参合(人目、标杆端和山脚三点共线).人目高四尺八寸,欲知敌军相去几何(敌我之间的距离).通过计算可知答案为
5400
5400
步.

查看答案和解析>>

24、通过学习同学们已经体会到灵活运用乘法公式给整式的乘法运算带来的方便、快捷.相信通过下面材料的学习、探究,会使你大开眼界,并获得成功的喜悦.
例:用简便方法计算195×205.
解:195×205
=(200-5)(200+5)           ①
=2002-52                    ②
=39975
(1)例题求解过程中,第②步变形是利用
平方差公式
(填乘法公式的名称).
(2)用简便方法计算:9×11×101×10001.

查看答案和解析>>

31、问题1:同学们已经体会到灵活运用乘法公式给整式乘法及多项式的因式分解带来的方便,快捷.相信通过下面材料的学习、探究,会使你大开眼界,并获得成功的喜悦.
例:用简便方法计算195×205.
解:195×205
=(200-5)(200+5)①
=2002-52
=39975
(1)例题求解过程中,第②步变形是利用
平方差公式
(填乘法公式的名称);
(2)用简便方法计算:9×11×101×10001.
问题2:对于形如x2+2ax+a2这样的二次三项式,可以用公式法将它分解成(x+a)2的形式.但对于二次三项式x2+2ax-3a2,就不能直接运用公式了.此时,我们可以在二次三项式x2+2ax-3a2中先加上一项a2,使它与x2+2ax的和成为一个完全平方式,再减去a2,整个式子的值不变,于是有:
x2+2ax-3a2=(x2+2ax+a2)-a2-3a2
=(x+a)2-(2a)2
=(x+3a)(x-a).
像这样,先添一适当项,使式中出现完全平方式,再减去这个项,使整个式子的值不变的方法称为“配方法”.
(1)利用“配方法”分解因式:a2-4a-12.
问题3:若x-y=5,xy=3,求:①x2+y2;②x4+y4的值.

查看答案和解析>>

计算
(1)解方程组:
x-y=4
4x+2y=-2
 
(2)
x+3
5
的值能否同时大于2x+3和1-x的值?说明理由.

查看答案和解析>>


同步练习册答案