题目列表(包括答案和解析)
设f(x)是定义在R上的偶函数,对x∈R,都有f(x+4)=f(x),且当x∈[-2,0]时,f(x)=(
)x-1,若在区间(-2,6]内关于x的方程f(x)-loga(x+2)=0(a>1)恰有3个不同的实数根,则a的取值范围是
A.(1,2) B.(2,+∞) C.(1,
) D.(
,2)
已知函数y=f(x)是R上的偶函数,对于x∈R都有f(x-6)=f(x)+f(3)成立,且f(0)=-2,当x1,x2∈[0,3],且x1≠x2时,都有
>0.则给出下列命题:
①f(2010)=-2; ②函数y=f(x)图像的一条对称轴为x=-6;
③函数y=f(x)在[-9,-6]上为增函数;④方程f(x)=0在[-9,9]上有4个根.
其中所有正确命题的序号为__________
设f(x)是定义在R上的偶函数,对x∈R,都有f(x+4)=f(x),且当x∈[-2,0]时,f(x)=(
)x-1,若在区间(-2,6]内关于x的方程f(x)-loga(x+2)=0(a>1)恰有3个不同的实数根,则a的取值范围是
A.(1,2) B. (2,+∞) C. (1,
) D. (
,2)
设f (x)是定义在R上的偶函数,对x∈R,都有f(x-2)=f(x+2),且当x∈[-2,0]时,f(x)=(
)x-1,若在区间(-2,6]内关于x的方程f(x)-loga(x+2)=0(a>1)恰有3个不同的实数根,则a的取值范围是(
)![]()
A.(1, 2)
B.(2,+∞)
C.(1,
)
D.(
,
2)w
设f(x)是定义在R上的偶函数,对x∈R,都有f(x+4)=f(x),且当x∈[-2,0]时,f(x)=(
)x-1,若在区间(-2,6]内关于x的方程f(x)-loga(x+2)=0(a>1)恰有3个不同的实数根,则a的取值范围是
| A.(1,2) | B.(2,+∞) | C.(1, | D.( |
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com