若实数x.y满足x2+y2-2x+4y=0则x-2y的最大值为 A. B.10 C.9 D.5+2 查看更多

 

题目列表(包括答案和解析)

若实数x,y满足
x2+(y+3)2
+
x2+(y-3)2
=10
,则t=
x
4
+
y
5
的最大值为
2
2

查看答案和解析>>

若实数x,y满足x2+(y-1)2=2,且x+y+d=0,则实数d的取值范围是(    )

查看答案和解析>>

(2013•房山区一模)对于实数x,将满足“0≤y<1且x-y为整数”的实数y称为实数x的小数部分,用记号<x>表示.例<1.2>=0.2,<-1.2>=0.8,<
8
7
>=
1
7
.对于实数a,无穷数列{an}满足如下条件:a1=<a>,an+1=
1
an
 an≠0
0        an=0
,其中n=1,2,3,….
(Ⅰ)若a=
2
,求数列{an}的通项公式;
(Ⅱ)当a>
1
4
时,对任意的n∈N+,都有an=a,求符合要求的实数a构成的集合A;
(Ⅲ)若a是有理数,设a=
p
q
 (p是整数,q是正整数,p,q互质),对于大于q的任意正整数n,是否都有an=0成立,证明你的结论.

查看答案和解析>>

对于实数x,将满足“0≤y<1且x-y为整数”的实数y称为实数x的小数部分,用记号{x}表示.例如{1.2}=0.2,{-1.2}=0.8,{
8
7
}=
1
7
.对于实数a,无穷数列{an}满足如下条件:a1={a},an+1=
1
an
  ,an≠0
0, an=0
  其中n=1,2,3,….
(1)若a=
2
,求a2,a3 并猜想数列{a}的通项公式(不需要证明);
(2)当a>
1
4
时,对任意的n∈N*,都有an=a,求符合要求的实数a构成的集合A;
(3)若a是有理数,设a=
p
q
 (p是整数,q是正整数,p,q互质),对于大于q的任意正整数n,是否都有an=0成立,证明你的结论.

查看答案和解析>>

设实数x,y满足x2+(y-1)2=1,当x+y+d≥0恒成立时,d的取值范围是_________.

查看答案和解析>>


同步练习册答案