设函数f(x)=x+的图象为c1,c1关于点A(2.1)对称的图象为c2,c2对应的函数为g(x). (1)求g(x)的解析表达式, (2)解不等式logag(x)<loga (a>0.且a≠1) 查看更多

 

题目列表(包括答案和解析)

(本小题满分12分)

设函数.

(1)若函数的图象在点处的切线为直线l,且直线l与圆相切,求a的值;

(2)当时,求函数f(x)的单调区间.

 

 

查看答案和解析>>

(本小题满分12分)

=(2cosx,1),=(cosx,sin2x),f(x)=·,xR.

⑴ 若f(x)=0且x[-,],求x的值.

⑵ 若函数g(x)=cos(wx-)+k(w>0, kR)与f(x)的最小正周期相同,且g(x)的图象过点(,2),求函数g(x)的值域及单调递增区间.

查看答案和解析>>


本小题满分12分)
已知函数f(x)=lnx-ax2+(2-a)x.
(I)讨论f(x)的单调性;
(II)设a>0,证明:当0<x<时,f(+x)>f(-x);
(III)若函数y=f(x)的图像与x轴交于A,B两点,线段AB中点的横坐标为x0,证明:f’( x0)<0.

查看答案和解析>>

(本小题满分12分)已知二次函数f(x)=ax2+bx+c和一次函数g(x)=-bx,其中a、b、c满足a>b>c,a+b+c=0,(a,b,c∈R)
(1)求证:函数图象交于不同的两点;
(2)设(1)问中交点为,求线段AB在x轴上的射影A1B1的长的取值范围。

查看答案和解析>>

(本小题满分12分)

   已知函数

  (Ⅰ)设{an}是正数组成的数列,前n项和为Sn,其中a1=3,若点 (n∈N*)在函数y=f′(x)的图象上,求证:点(n, Sn)也在y=f′(x)的图象上;

  (Ⅱ)求函数f(x)在区间(a-1,a)内的极值。

查看答案和解析>>


同步练习册答案