已知函数且函数 f(x) 的图象关于原点对称.其图象在x = 3 处的切线方程为8x – y – 18 = 0 . (1)问是否存在区间[ m , n ].使得函数 f (x) 的定义域和值域均为 [ m , n ]?若存在.求出 f (x) 的解析式和这样的一个区间 [ m , n ],若不存在.请说明理由, (2)设数列 { a n }满足:.试比较+ 与1的大小关系.并说明理由. 查看更多

 

题目列表(包括答案和解析)

(本小题满分14分)

已知函数f(x)=,g(x)=alnx,aR。

若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值及该切线的方程;

设函数h(x)=f(x)- g(x),当h(x)存在最小之时,求其最小值(a)的解析式;

对(2)中的(a),证明:当a(0,+)时, (a)1.

查看答案和解析>>

(本小题满分14分)

已知函数f(x)=,g(x)=alnx,aR。

若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值及该切线的方程;

设函数h(x)=f(x)- g(x),当h(x)存在最小之时,求其最小值(a)的解析式;

对(2)中的(a),证明:当a(0,+)时, (a)1.

查看答案和解析>>

(本小题满分14分) 已知函数f (x)=ex-k-x,其中x∈R. (1)当k=0时,若g(x)= 定义域为R,求实数m的取值范围;(2)给出定理:若函数f (x)在[a,b]上连续,且f (a)·f (b)<0,则函数y=f (x)在区间(a,b)内有零点,即存在x0∈(a,b),使f (x0)=0;运用此定理,试判断当k>1时,函数f (x)在(k,2k)内是否存在零点.

查看答案和解析>>

(本小题满分14分) 已知函数f (x)=ex-k-x,其中x∈R. (1)当k=0时,若g(x)= 定义域为R,求实数m的取值范围;(2)给出定理:若函数f (x)在[a,b]上连续,且f (a)·f (b)<0,则函数y=f (x)在区间(a,b)内有零点,即存在x0∈(a,b),使f (x0)=0;运用此定理,试判断当k>1时,函数f (x)在(k,2k)内是否存在零点.

查看答案和解析>>

(本小题满分14分) 已知函数f (x)=ex-k-x,其中x∈R. (1)当k=0时,若g(x)= 定义域为R,求实数m的取值范围;(2)给出定理:若函数f (x)在[a,b]上连续,且f (a)·f (b)<0,则函数y=f (x)在区间(a,b)内有零点,即存在x0∈(a,b),使f (x0)=0;运用此定理,试判断当k>1时,函数f (x)在(k,2k)内是否存在零点.

查看答案和解析>>


同步练习册答案