(1)函数定义域为, 由得 由得 则递增区间是递减区间是 (2)由 得. 由(1)知, 在上递减,在上递增.又. 时, 故时,不等式恒成立. (3)方程 即.记, .由得 由得在上递减, 在上递增. 为使在上恰好有两个相异的实根,只须 在和上各有一个实根,于是{ 解得 查看更多

 

题目列表(包括答案和解析)

(本小题满分12分)已知函数

(I)若函数在区间上存在极值,求实数a的取值范围;

(II)当时,不等式恒成立,求实数k的取值范围.

(Ⅲ)求证:解:(1),其定义域为,则

时,;当时,

在(0,1)上单调递增,在上单调递减,

即当时,函数取得极大值.                                       (3分)

函数在区间上存在极值,

 ,解得                                            (4分)

(2)不等式,即

(6分)

,则

,即上单调递增,                          (7分)

,从而,故上单调递增,       (7分)

          (8分)

(3)由(2)知,当时,恒成立,即

,则,                               (9分)

                                                                       (10分)

以上各式相加得,

                           

                                        (12分)

 

查看答案和解析>>

已知函数处取得极值2.

⑴ 求函数的解析式;

⑵ 若函数在区间上是单调函数,求实数m的取值范围;

【解析】第一问中利用导数

又f(x)在x=1处取得极值2,所以

所以

第二问中,

因为,又f(x)的定义域是R,所以由,得-1<x<1,所以f(x)在[-1,1]上单调递增,在上单调递减,当f(x)在区间(m,2m+1)上单调递增,则有,得

解:⑴ 求导,又f(x)在x=1处取得极值2,所以,即,所以…………6分

⑵ 因为,又f(x)的定义域是R,所以由,得-1<x<1,所以f(x)在[-1,1]上单调递增,在上单调递减,当f(x)在区间(m,2m+1)上单调递增,则有,得,                …………9分

当f(x)在区间(m,2m+1)上单调递减,则有 

                                                …………12分

.综上所述,当时,f(x)在(m,2m+1)上单调递增,当时,f(x)在(m,2m+1)上单调递减;则实数m的取值范围是

 

查看答案和解析>>

已知函数.(

(1)若在区间上单调递增,求实数的取值范围;

(2)若在区间上,函数的图象恒在曲线下方,求的取值范围.

【解析】第一问中,首先利用在区间上单调递增,则在区间上恒成立,然后分离参数法得到,进而得到范围;第二问中,在区间上,函数的图象恒在曲线下方等价于在区间上恒成立.然后求解得到。

解:(1)在区间上单调递增,

在区间上恒成立.  …………3分

,而当时,,故. …………5分

所以.                 …………6分

(2)令,定义域为

在区间上,函数的图象恒在曲线下方等价于在区间上恒成立.   

        …………9分

① 若,令,得极值点

,即时,在(,+∞)上有,此时在区间上是增函数,并且在该区间上有,不合题意;

,即时,同理可知,在区间上递增,

,也不合题意;                     …………11分

② 若,则有,此时在区间上恒有,从而在区间上是减函数;

要使在此区间上恒成立,只须满足

由此求得的范围是.        …………13分

综合①②可知,当时,函数的图象恒在直线下方.

 

查看答案和解析>>


同步练习册答案