10.在,求 (1) (2)若点 安徽理 查看更多

 

题目列表(包括答案和解析)

(2010安徽理数)19、(本小题满分13分)

已知椭圆经过点,对称轴为坐标轴,焦点

轴上,离心率

    (Ⅰ)求椭圆的方程;

(Ⅱ)求的角平分线所在直线的方程;

(Ⅲ)在椭圆上是否存在关于直线对称的相异两点?

若存在,请找出;若不存在,说明理由。

查看答案和解析>>

(2012•安徽模拟)已知椭圆
x2
a2
+
y2
b2
=1
(a>b>0)过点A(a,0),B(0,b)的直线倾斜角为
6
,原点到该直线的距离为
3
2

(1)求椭圆的方程;
(2)斜率小于零的直线过点D(1,0)与椭圆交于M,N两点,若
MD
=2
DN
求直线MN的方程;
(3)是否存在实数k,使直线y=kx+2交椭圆于P、Q两点,以PQ为直径的圆过点D(1,0)?若存在,求出k的值;若不存在,请说明理由.

查看答案和解析>>

(2012•安徽模拟)(理)已知f(x)=ax+
b
x
+2-2a(a>0)的图象在点(1,f(1))处的切线与直线y=2x+1平行.
(I)求a,b满足的关系式;
(II)若f(x)≥2lnx在[1,+∞)上恒成立,求a的取值范围;
(III)证明:1+
1
3
+
1
5
+
…+
1
2n-1
1
2
(2n+1)+
n
2n+1
(n∈N+

查看答案和解析>>

(2012•安徽模拟)设椭圆E:
x2
a2
+
y2
b2
=1
(a>b>0)过M(2,
2
),N(
6
,1)两点,O为坐标原点,
(1)求椭圆E的方程;
(2)是否存在圆心在原点的圆,使该圆的任意一条切线与椭圆E恒有两个交点A、B,且
OA 
OB 
?若存在,写出该圆的方程,并求|AB|取值范围;若不存在,说明理由.

查看答案和解析>>

(2012•安徽模拟)设函数f(x)=ax+2,g(x)=a2x2-lnx+2,其中a∈R,x>0.
(Ⅰ)若a=2,求曲线y=g(x)在点(1,g(1))处的切线方程;
(Ⅱ)是否存在负数a,使f(x)≤g(x)对一切正数x都成立?若存在,求出a的取值范围;若不存在,请说明理由.

查看答案和解析>>


同步练习册答案