题目列表(包括答案和解析)
(本小题满分12分)
已知数列{an}的前三项与数列{bn}的前三项对应相等,且a1+2a2+22a3+…+2n-1an=8n对任意的n∈N*都成立,数列{bn+1-bn}是等差数列.
(1)求数列{an}与{bn}的通项公式;
(2)是否存在k∈N*,使得bk-ak∈(0,1)?请说明理由.
(本小题满分12分)
(理科)若
,且当
时,不等式
恒成立,求实数
的取值范围。
(文科)已知数列 {2 n•an} 的前 n 项和 Sn = 9-6n.
(I) 求数列 {an} 的通项公式;
(II) 设 bn = n·(2-log 2 ),求数列 { } 的前 n 项和Tn 。
(本小题满分12分)
(理科)已知数列 {2 n•an} 的前 n 项和 Sn = 9-6n.
(I) 求数列 {an} 的通项公式;
(II) 设 bn = n·(2-log 2 ),求数列 { } 的前 n 项和Tn.
(文科)已知
,且f(0)=8及f(x+1)-f(x)=-2x+1。
(1)求
的解析式;
(2)求函数
的单调递减区间及值域.
(本小题满分12分)
已知数列{an}的前n项和为Sn,
且满足
.
(1)求证:{
}是等差数列;
(2)求an的表达式;
(3)(理) 若bn=2(1-n)·an(n≥2)时,求证:b22+b32+…+bn2<1.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com