题目列表(包括答案和解析)
(本小题满分12分)如图,已知直三棱柱ABC—A1B1C1的侧棱长为2,底面△ABC是等腰直角三角形,且∠ACB=90°,AC=2,D是A A1的中点. (Ⅰ)求异面直线AB和C1D所成的角(用反三角函数表示);(Ⅱ)若E为AB上一点,试确定点E在AB上的位置,使得A1E⊥C1D;
(Ⅲ)在(Ⅱ)的条件下,求点D到平面B1C1E的距离.
(本小题满分12分) 如图所示,已知圆
为圆上一动点,点
在
上,点
在
上,且满足
的轨迹为曲线
.
(1)求曲线
的方程;
(2)过点
且斜率为k的动直线
交曲线
于A、B两点,在y轴上是否存在定点G,满足
使四边
形
为矩形?若存在,求出G的坐标和四边形
面积的最大值;若不存
在,说明理由。
(本小题满分12分)
如右图所示,已知直四棱柱
的底面是菱形,且
,
,F为
的中点,M为线段
的中点。
(1)求证:直线MF
平面ABCD
(2)求证:直线MF
平面![]()
(3)求平面
与平面ABCD所成二面角的大小
![]()
(本小题满分12分)如图所示,已知圆![]()
|
足
的轨迹为曲线E.
(1)求曲线E的方程;(II)若过定点F(0,2)
的直线交曲线E于不同的两点G、H(点G在点F、H之间),
且满足
,求
的取值范围.
(本小题满分12分)如图所示,已知圆
为圆上一动点,点P在AM上,点N在CM上,且满足
,点N的轨迹为曲线E。
(Ⅰ)求曲线E的方程;
(Ⅱ)若过定点F(0,2)的直线交曲线E于不同的两点G、H(点G在点F、H之间),且满足
的取值范围。
![]()
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com