设f(x)是定义域是R.且对一切实数x满足f, f, ; (2)已知时.求当时.函数g的表达式.并求出g(x)的最大值和最小值, =0的一根是0.记f(x)=0在区间[-1000.1000]上的根数为N.求N的最小值. 查看更多

 

题目列表(包括答案和解析)

(本小题满分12分)
设函数f(x)的定义域为R,若|f(x)|≤|x|对任意的实数x均成立,则称函数f(x)为函数。
(1)试判断函数= =中哪些是函数,并说明理由;
(2)求证:若a>1,则函数f(x)=ln(x2+a)-lna是函数。

查看答案和解析>>

(本小题满分12分)设函数fx)的定义域是R,对于任意实数m,n,恒有f(m+n)=f(m)f(n),且当x>0时,0<fx)<1。
(1)求证:f(0)=1,且当x<0时,有fx)>1;
(2)判断fx)在R上的单调性;
⑶设集合A={(x,y)|fx2fy2)>f(1)},集合B={(x,y)|faxy+2)=1,a∈R},若A∩B=,求a的取值范围。

查看答案和解析>>

(本小题满分12分)

设函数f (x)=,其中a∈R.

(1)若a=1,f (x)的定义域为[0,3],求f (x)的最大值和最小值.

(2)若函数f (x)的定义域为区间(0,+∞),求a的取值范围使f (x)在定义域内是单调减函数.

 

查看答案和解析>>

(本小题满分12分) 设函数fx)的定义域是R,对于任意实数m,n,恒有f(m+n)=f(m)f(n),且当x>0时,0<fx)<1。

(1)求证:f(0)=1,且当x<0时,有fx)>1;

(2)判断fx)在R上的单调性;

    ⑶设集合A={(x,y)|fx2fy2)>f(1)},集合B={(x,y)|faxy+2)=1,a∈R},若A∩B=,求a的取值范围。

 

查看答案和解析>>

(本小题满分12分)
设函数f (x)=,其中a∈R.
(1)若a=1,f (x)的定义域为[0,3],求f (x)的最大值和最小值.
(2)若函数f (x)的定义域为区间(0,+∞),求a的取值范围使f (x)在定义域内是单调减函数.

查看答案和解析>>


同步练习册答案