(I)解f(x)=10-f(2m-x)若m=-1.则f(x)关于 所以a=1. 即 所以{bn}是以为公差的等差数列. 所以 (II)证明: 查看更多

 

题目列表(包括答案和解析)

已知函数f(x)=ex-ax(e为自然对数的底数).
(Ⅰ)当a=2时,求曲线f(x)在点(0,f(0))处的切线方程;
(Ⅱ)求函数f(x)的单调区间;
(Ⅲ)已知函数f(x)在x=0处取得极小值,不等式f(x)<mx的解集为P,若M={x|
12
≤x≤2}
,且M∩P≠∅,求实数m的取值范围.

查看答案和解析>>

已知函数f(x)=ex+ax(e为自然对数的底数,近似值为2.718).
(1)求f(x)的单调区间;
(2)不等式f(x)<x的解集为P,若M={x|
12
≤x≤2}且M∩P=M,求实数a的取值范围;
(3)当a=-1,且设g(x)=exlnx,是否存在x0∈(0,+∞),使曲线C:y=g(x)-f(x)在点x0处的切线斜率与f(x)在R上的最小值相等?若存在,求符合条件的个数;若不存在,请说明理由.

查看答案和解析>>

已知函数f(x)=ex-x (e为自然对数的底数).
(1)求f(x)的最小值;
(2)不等式f(x)>ax的解集为P,若M={x|
12
≤x≤2}且M∩P≠∅,求实数a的取值范围;(3)已知n∈N﹡,且Sn=∫tn[f(x)+x]dx(t为常数,t≥0),是否存在等比数列{bn},使得b1+b2+…bn=Sn;若存在,请求出数列{bn}的通项公式;若不存在,请说明理由.

查看答案和解析>>

已知函f(x)=ex-x (e为自然对数的底数).
(1)求f(x)的最小值;
(2)不等式f(x)>ax的解集为P,若M={x|
12
≤x≤2
}且M∩P≠∅求实数a的取值范围;
(3)已知n∈N+,且Sn=∫n0f(x)dx,是否存在等差数列{an}和首项为f(I)公比大于0的等比数列{bn},使得a1+a2+…+an+b1+b2+…bn=Sn?若存在,请求出数列{an}、{bn}的通项公式.若不存在,请说明理由.

查看答案和解析>>

已知函数f(x)=ex-x(e为自然对数的底数)
(1)求f(x)的最小值;
(2)不等式f(x)>ax的解集为P,若M={x|
12
≤x≤2}且M∩P≠?
,求实数a的取值范围.

查看答案和解析>>


同步练习册答案