已知抛物线过椭圆的两焦点.且与椭圆有三个不同的公共点. (1)求抛物线方程 (2)当时.设过椭圆右焦点且与抛物线相切的直线与椭圆交于.两点.试求的面积(其中是坐标原点) 查看更多

 

题目列表(包括答案和解析)

已知抛物线y2=4ax(a>0)的焦点为F,以点A(a+4,0)为圆心,|AF|为半径的圆在x轴的上方与抛物线交于M、N两点.
(I)求证:点A在以M、N为焦点,且过点F的椭圆上;
(II)设点P为MN的中点,是否存在这样的a,使得|FP|是|FM|与|FN|的等差中项?如果存在,求出实数a的值;如果不存在,请说明理由.

查看答案和解析>>

已知抛物线C1:y2=4px(p>0),焦点为F2,其准线与x轴交于点F1;椭圆C2:分别以F1、F2为左、右焦点,其离心率e=
12
;且抛物线C1和椭圆C2的一个交点记为M.
(1)当p=1时,求椭圆C2的标准方程;
(2)在(1)的条件下,若直线l经过椭圆C2的右焦点F2,且与抛物线C1相交于A,B两点,若弦长|AB|等于△MF1F2的周长,求直线l的方程.

查看答案和解析>>

已知抛物线C:x2=2py(p>0)的焦点F与P(2,-1)关于直线l:x-y-2=0对称,中心在坐标原点的椭圆经过两点M(1,
7
2
),N(-
2
6
2
),且抛物线与椭圆交于两点A(xA,yA)和B(xB,yB),且xA<xB
(1)求出抛物线方程与椭圆的标准方程;
(2)若直线l′与抛物线相切于点A,试求直线l′与坐标轴所围成的三角形的面积;
(3)若(2)中直线l′与圆x2-2mx+y2+2y+m2-
24
25
=0恒有公共点,试求m的取值范围.

查看答案和解析>>

精英家教网已知抛物线C:x2=4y的焦点为F,过点F作直线l交抛物线C于A、B两点;椭圆E的中心在原点,焦点在x轴上,点F是它的一个顶点,且其离心率e=
3
2

(1)经过A、B两点分别作抛物线C的切线l1,l2,切线l1与l2相交于点M.证明:
MF
MA
=
MF
MB

(2)椭圆E上是否存在一点M',经过点M'作抛物线C的两条切线M'A',M'B'(A',B'为切点),使得直线A'B'过点F?若存在,求出抛物线C与切线M'A',M'B'所围成图形的面积;若不存在,请说明理由.

查看答案和解析>>

已知抛物线C:x2=4y的焦点为F,过点F作直线l交抛物线C于A、B两点;椭圆E的中心在原点,焦点在x轴上,点F是它的一个顶点,且其离心率e=
3
2

(1)求椭圆E的方程;
(2)经过A、B两点分别作抛物线C的切线l1、l2,切线l1与l2相交于点M.证明:AB⊥MF;
(3)椭圆E上是否存在一点M′,经过点M′作抛物线C的两条切线M′A′、M′B(A′、B′为切点),使得直线A′B′过点F?若存在,求出抛物线C与切线M′A′、M′B所围成图形的面积;若不存在,试说明理由.

查看答案和解析>>


同步练习册答案